




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。本专题以ENVI中的面向对象的特征提取FX工具为例,对这种技术和处理流程做一个简单的介绍。本专题包括以下内容:l面向对象分类技术概述lENVI FX简介lENVI FX操作说明1、面向对象分类技术概述面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:对象构建和对象的分类。影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。影像对象的分类,目前常用的方法是“监督分类”和“基于规则(知识)分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等对象属性信息。基于规则(知识)分类也是根据影像对象的属性和阈值来设定规则进行分类。表1为三大类分类方法的一个大概的对比。类型基本原理影像的最小单元适用数据源缺陷传统基于光谱的分类方法地物的光谱信息特征单个的影像像元中低分辨率多光谱和高光谱影像丰富的空间信息利用率几乎为零基于专家知识决策树根据光谱特征、空间关系和其他上下文关系归类像元单个的影像像元多源数据知识获取比较复杂面向对象的分类方法几何信息、结构信息以及光谱信息一个个影像对象中高分辨率多光谱和全色影像速度比较慢表1传统基于光谱、基于专家知识决策树与基于面向对象的影像分类对比表2、ENVI FX简介全名叫“面向对象空间特征提取模块Feature Extraction”,基于影像空间以及影像光谱特征,即面向对象,从高分辨率全色或者多光谱数据中提取信息,该模块可以提取各种特征地物如车辆、建筑、道路、桥、河流、湖泊以及田地等。该模块可以在操作过程中随时预览影像分割效果。该项技术对于高光谱数据有很好的处理效果,对全色数据一样适用。对于高分辨率全色数据,这种基于目标的提取方法能更好的提取各种具有特征类型的地物。一个目标物体是一个关于大小、光谱以及纹理(亮度、颜色等)的感兴趣区域。可应用于:l从影像中尤其是大幅影像中查找和提取特征。l添加新的矢量层到地理数据库l输出用于分析的分类影像l替代手工数字化过程具有易于操作(向导操作流程),随时预览效果和修改参数,保存参数易于下次使用和与同事共享,可以将不同数据源加入ENVI FX中(DEMs、LiDAR datasets、shapefiles、地面实测数据)以提高精度、交互式计算和评估输出的特征要素、提供注记工具可以标识结果中感兴趣的特征要素和对象等特点。3、ENVI FX操作说明ENVI FX的操作可分为两个部分:发现对象(Find Object)和特征提取(Extract features),如图1所示。图1 FX操作流程示意图下面在ENVI5.0下的FX工具,以0.6米的QB图像为例,介绍向对象信息提取的流程。下面我们。3.1基于规则的面向对象信息提取该方法的工具为Toolbox /Feature Extraction/ Rule Based Feature Extraction Workflow第一步:准备工作根据数据源和特征提取类型等情况,可以有选择地对数据做一些预处理工作。l空间分辨率的调整如果您的数据空间分辨率非常高,覆盖范围非常大,而提取的特征地物面积较大(如云、大片林地等)。可以降低分辨率,提供精度和运算速度。可利用Toolbox/Raster Management/Resize Data工具实现。l光谱分辨率的调整如果您处理的是高光谱数据,可以将不用的波段除去。可利用Toolbox/Raster Management/Layer Stacking工具实现。l多源数据组合当您有其他辅助数据时候,可以将这些数据和待处理数据组合成新的多波段数据文件,这些辅助数据可以是DEM, lidar影像,和SAR影像。当计算对象属性时候,会生成这些辅助数据的属性信息,可以提高信息提取精度。可利用Toolbox/Raster Management/Layer Stacking工具实现。l空间滤波如果您的数据包含一些噪声,可以选择ENVI的滤波功能做一些预处理。这里直接在ENVI中打开qb_colorado.dat图像文件。第二步:发现对象(1)启动Rule Based FX工具在Toolbox中,找到Feature Extraction,选择/Feature Extraction/Rule Based Feature Extraction Workflow,打开工作流的面板,选择待分类的影像qb_colorado.dat,此外还有三个面板可切换:在Input Mask面板可输入掩膜文件,在Ancillary Data面板可输入其他多源数据文件,切换到Custom Bands面板,有两个自定义波段,包括归一化植被指数或者波段比值、HSI颜色空间,这些辅助波段可以提高图像分割的精度,如植被信息的提取等自定义的属性,在Normalized Difference和Color Space属性上打钩,如下图所示,点击Next;图2输入数据和属性参数选择(2)影像分割、合并FX根据临近像素亮度、纹理、颜色等对影像进行分割,它使用了一种基于边缘的分割算法,这种算法计算很快,并且只需一个输入参数,就能产生多尺度分割结果。通过不同尺度上边界的差异控制,从而产生从细到粗的多尺度分割。选择高尺度影像分割将会分出很少的图斑,选择一个低尺度影像分割将会分割出更多的图斑,分割效果的好坏一定程度决定了分类效果的精确度,我们可以通过preview预览分割效果,选择一个理想的分割阀值,尽可能好地分割出边缘特征。有两个图像分割算法供选择:lEdge,基于边缘检测,需要结合合并算法可以达到最佳效果;lIntensity:基于亮度,这种算法非常适合于微小梯度变化(如DEM)、电磁场图像等,不需要合并算法即可达到较好的效果。调整滑块阀值对影像进行分割,这里设定阈值为40。注:按钮是用来选择分割波段的,默认为Base Image所有波段。影像分割时,由于阈值过低,一些特征会被错分,一个特征也有可能被分成很多部分。我们可以通过合并来解决这些问题。合并算法也有两个供选择:lFull Lambda Schedule,合并存在于大块、纹理性较强的区域,如树林、云等,该方法在结合光谱和空间信息的基础上迭代合并邻近的小斑块;lFast Lambda:合并具有类似的颜色和边界大小相邻节段。设定一定阈值,预览效果。这里我们设置的阈值为90,点Next进入下一步。Texture Kernal Size:纹理内核的大小,如果数据区域较大而纹理差异较小,可以把这个参数设置大一点。默认是3,最大是19。注:这一步是可选项,如果不需要可以按照默认的0直接跳过。图3图像分割、合并这时候FX生成一个Region Means影像自动加载图层列表中,并在窗口中显示,它是分割后的结果,每一块被填充上该块影像的平均光谱值。接着进行下一步操作。目前,已经完成了发现对象的操作过程,接下来是特征的提取。第三步:根据规则进行特征提取在规则分类界面。每一个分类有若干个规则(Rule)组成,每一个规则有若干个属性表达式来描述。规则与规则之间是与的关系,属性表达式之间是并的关系。同一类地物可以由不同规则来描述,比如水体,水体可以是人工池塘、湖泊、河流,也可以是自然湖泊、河流等,描述规则就不一样,需要多条规则来描述。每条规则又有若干个属性来描述,如下是对水的一个描述:l面积大于500像素l延长线小于0.5lNDVI小于0.25对道路的描述:l延长线大于0.9l紧密度小于0.3l标准差小于20这里以提取居住房屋为例来说明规则分类的操作过程。首先分析影像中容易跟居住房屋错分的地物有:道路、森林、草地以及房屋旁边的水泥地。点击按钮,新建一个类别,在右侧Class properties下修改好类别的相应属性。图4规则分类面板1)第一条属性描述,划分植被覆盖和非覆盖区。在默认的属性Spectral Mean上单击,激活属性,右边出现属性选择面板,如图所示。选择Spectral,Band下面选择Normalized Difference。在第一步自定义波段中选择的波段是红色和近红外波段,所以在此计算的是NDVI。把Show Attribute Image勾上,可以看到计算的属性图像。通过拖动滑条或者手动输入确定阈值。在阈值范围内的在预览窗口里显示为红色,在Advanced面板,有三个类别归属的算法:算法有二进制、线性和二次多项式。选择二进制方法时,权重为0或者1,即完全不匹配和完全匹配两个选项;当选择线性和二次多项式时,可通过Tolerance设置匹配程度,值越大,其他分割块归属这一类的可能性就越大。这里选择类别归属算法为Liner,分类阈值Tolerance为默认的5,如下图图5对象属性面板图6归属类别算法和阈值设置2)第二条属性描述,剔除道路干扰居住房屋和道路的最大区别是房屋是近似矩形,我们可以设置Rectangular fit属性。在Rule上右键选择Add Attibute按钮,新建一个规则,在右侧Type中选择Spatial,在Name中选择Rectangular fit。设置值的范围是0.51,其他参数为默认值。注:预览窗口默认是该属性的结果,点击All Classes,可预览几个属性共同作用的结果。同样的方法设置Type:Spatial;Name:AreaArea45Type:Spatial;Name:ElongationElongation33)第三条属性描述,剔除水泥地干扰水泥地反射率比较高,居住房屋反射率较低,所以我们可以设置波段的象元值。Type:spectral;Name:Spectral Mean,Band:GREENSpectral Mean (GREEN)Basic Tool-Resize Data工具实现。l光谱分辨率的调整如果您处理的是高光谱数据,可以将不用的波段除去。可利用ENVI主界面-Basic Tool-layer stacking工具实现。l多源数据组合当您有其他辅助数据时候,可以将这些数据和待处理数据组合成新的多波段数据文件,这些辅助数据可以是DEM, lidar 影像, 和SAR 影像。当计算对象属性时候,会生成这些辅助数据的属性信息,可以提高信息提取精度。可利用ENVI主界面-Basic Tool-layer stacking工具实现。l空间滤波如果您的数据包含一些噪声,可以选择ENVI的滤波功能做一些预处理。3.2 发现对象(一)打开数据在ENVI Zoom中打开Processing Feature Extraction。如图2所示,Base Image 必须要选择,辅助数据(Ancillary Data)和掩膜文件(Mask File)是可选。这里选择ENVI自带数据envidatafeature_extraction qb_colorado,它是0.6米的快鸟数据。(二)影像分割FX根据临近像素亮度、纹理、颜色等对影像进行分割,它使用了一种基于边缘的分割算法,这种算法计算很快,并且只需一个输入参数,就能产生多尺度分割结果。通过不同尺度上边界的差异控制,从而产生从细到粗的多尺度分割。选择高尺度影像分割将会分出很少的图斑,选择一个低尺度影像分割将会分割出更多的图斑,分割效果的好坏一定程度决定了分类效果的精确度,我们可以通过预览分割效果,选择一个理想的分割阀值,尽可能好地分割出边缘特征。调整滑块阀值对影像进行分割,这里设定阈值为30,点击Next按钮,这时候FX生成一个Region Means 影像自动加载图层列表中,并在窗口中显示,它是分割后的结果,每一块被填充上该块影像的平均光谱值。接着进行下一步操作。注:按钮是用来选择分割波段的,默认为Base Image所有波段。(三)合并分块影像分割时,由于阈值过低,一些特征会被错分,一个特征也有可能被分成很多部分。我们可以通过合并来解决这些问题。FX利用了 Full Lambda-Schedule算法。这一步是可选项,如果不需要可以直接跳过。设定一定阈值,预览效果。这里我们设置的阈值为95,点Next进入下一步。(四)分块精炼FX提供了一种阈值法(Thresholding)进一步精炼分块的方法。对于具有高对比度背景的特征非常有效(例如,明亮的飞机对黑暗的停机坪)。可以将精炼结果生成掩膜图层(Mask),按钮可以修改基于哪个波段。这里我们就直接选择No Thresholding(default),点击Next进入下一步操作。(五)计算对象属性计算4个类别的属性:光谱、空间、纹理、自定义(颜色空间和波段比)。其中“颜色空间”选择三个RGB波段转换为HSI颜色空间,“波段比”选择两个波段用于计算波段比(常用红色和近红外波段)。各个属性的详细描述参考ENVI/IDL提供的Feature_Extraction_Module.pdf文档。这里我们按照默认全选择,Color Space 选择RGB,Band Ratio选择红色和近红外波段,点击Next按钮进行下一步操作。目前,已经完成了发现对象的操作过程,接下来是特征的提取。3.3 特征提取如图7所示,有三种特征提取方法供选择,分别是监督分类、规则分类和直接矢量输出。(一)输出矢量选择Export Vectors,进入图8界面,选择保存路径,属性信息也可选择输出输出完成会出来一个报表。不关闭FX浮动面板,在ENVI Zoom中将得到的矢量特征加载显示。点击Previous按钮,回到图7界面。(二)监督分类在图7界面中选择Classify by selection examples,下一步到如图8所示界面。1)选择样本在ENVI Zoom中,切换到Select方式,双击Feature_1,打开一个类别的属性,如图10所示,修改显示颜色、名称等信息。在分割图上选择一些样本,为了方便样本的选择,可以在ENVI Zoom的图层管理中将原图移到最上层,选择一定数量的样本,如果错选样本,可以在这个样本上点击左键删除。一个类别的样本选择完成之后,新增类别,用同样的方法修改类别属性和选择样本。在选择样本的过程中,可以随时预览结果。可以把样本保存为xml文件以备下次使用。2)设置样本属性在图9中,切换到Attributes选项。默认是所有的属性都被选择,可以根据提取的实际地物特性选择一定的属性。这里我们按照默认全部选择。3)选择分类方法在图9中,切换到Algorithm选项。FX提供了两种分类方法:K邻近法(K Nearest Neighbor)和支持向量机(Support Vector Machine ,SVM),如图12所示。这里我们选择K邻近法,K参数设置为5,点击下一步,输出结果。4)输出结果特征提取结果可以以两种格式输出,矢量和图像,如图12所示。矢量可以是所有分类以单个文件输出或者每一个类别分别输出;图像可以把分类结果和规则结果分布输出。这里我们选择单个文件以及属性数据一块输出,分类图像和规则图像一块输出。点击Next按钮完成输出,同时可以看到整个操作的参数和结果统计报表。(三)规则分类在图7界面中选择Classify by creating rules,点击Next,到图15规则分类界面。每一个分类有若干个规则(Rule)组成,每一个规则有若干个属性表达式来描述。规则与规则直接是与的关系,属性表达式之间是并的关系。同一类地物可以由不同规则来描述,比如水体,水体可以是人工池塘、湖泊、河流,也可以是自然湖泊、河流等,描述规则就不一样,需要多条规则来描述。每条规则又有若干个属性来描述,如下是对水的一个描述:l面积大于500像素l延长线小于0.5lNDVI小于0.3对道路的描述:l延长线大于0.9l紧密度小于0.3l标准差小于20这里以提取居住房屋为例来说明规则分类的操作过程。首先分析影像中容易跟居住房屋错分的地物有:道路、森林、草地以及房屋旁边的水泥地。双击Feature_1图标,修改好类别的相应属性。1)第一条属性描述,划分植被覆盖和非覆盖区双击rule,打开对象属性选择面板,如图16所示。选择Customized-bandratio。FX会根据选择的波段情况技术波段比值,比如这里在属性计算步骤中选择的Ratio Band是红色和近红外波段,所以此时计算的是NDVI。把ShowAttribute Image勾上,可以看到计算的结果,通过ENVI Zoom工具查看各个分割块对应的值。点击Next按钮,或者双击bandratio,进入bandratio属性设置对话框.通过拖动滑条或者手动输入确定阈值。Fuzzy Tolerance是设置模糊分类阈值,值越大,其他分割块归属这一类的可能性就越大。归类函数有线性和S-type两种。这里设置模糊分类阈值为默认的5,归属类别为S-type,值的范围为00.3,勾选Show Rule Confidence Image可以预览规则图像。点击Ok完成此条属性描述。2)第二条属性描述,去除道路影响居住房屋和道路的最大区别是房屋是近似矩形,我们可以设置Rect_fit属性。点击按钮或者双击rule,选择Spatial-rect_fit。设置值的范围是0.51,其他参数为默认值。同样的方法设置Spatial-Area: Fuzzy Tolerance=0, 90Areaelongation(延长): elongationavgband_2: avgband_250。类似的思路可以提取道路、林地、草地等分类,这里就不一一例举。最终结果的输出方式和监督分类一样。3.4 批处理操作ENVI提供了ENVI_FX 函数,具体语法如下:ENVI_DOIT, ENVI_FX_DOIT , A_FID=array , A_POS=array , BR_BANDS=array, CENTERLINE_OPTIONS=array , CONF_THRESHOLD=floating point , CS_BANDS=array, DIMS=array, FID=file ID , /EXPORT_ATTRIBUTES , /EXPORT_RASTER , /INVERSE_MASK, KERNEL_SIZE=long integer , M_FID=file ID , MERGE_LEVEL=floating point, POS=array, R_FID=variable , RASTER_FILENAME=string or string array , /RAW_ATTRIBUTES, RAW_FILENAME=string , REFINE_BAND=integer , /REFINE_INVERSE , /REFINE_MASK, RULESET_FILENAME=string, SCALE_LEVEL=floating point , SEGMENT_BANDS=array, SMOOTHING_THRESHOLD=floating point , TD_FILENAME=string, THRESHOLD_LOWER=floating point , THRESHOLD_UPPER=floating point, VECTOR_FILENAME=string , VECTOR_OPTIONS=string array详细的变量说明请参考ENVI/IDL提供的Feature_Extraction_Module.pdf。利用此函数可以对根据分割参数和分类参数编写批处理,或者将此功能应用到别的系统上。从以上的实际操作可以看到,ENVI FX扩展模块操作具有易于操作(向导操作流程),随时预览效果和修改参数;功能比较强大,具有多种特征提取方法,包括监督分类和知识规则分类,等等。附录对象属性说明:(1)Spatial属性属性描述AREA多边形的面积,单位与Map单位一致LENGTH多边形外边框周长,包括洞的边框周长,单位与Map单位一致COMPACT紧密性,描述多边形紧密性的度量。如圆是紧密性最好的形状,其值为1/Pi,正方形的的值为1/2(sqrt(pi).COMPARCT=Sqrt (4 * AREA / pi) / 周长CON
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空器材维修工程师职业技能认证试题及答案
- 2025年航空企业机械师安全生产知识考试试题及答案
- 2025年主厂房检修班技能培训试卷及答案
- 3.1 DNA是主要遗传物质教学设计-2023-2024学年高一下学期生物人教版必修二
- 高速公路沥青施工合同(3篇)
- 安徽导游证试题及答案
- 爱尔三基考试题库及答案
- oppo会计笔试题目及答案
- 互联网房地产投资合作框架协议范本
- 2025国税公务员面试题及答案
- ARDS患者肺康复训练专家共识解读
- 生物防治技术-免疫接种技术(动物防疫与检疫技术)
- 中远海运(上海)有限公司招聘考试真题及答案2022
- 必胜客简介ppt模板
- 建设工程施工安全标准化管理资料(全十册汇编-通用版)
- 分子进化与系统发育分析
- GB/T 17505-2016钢及钢产品交货一般技术要求
- 第二章第一节认识网络 课件 【知识精讲+备课精研+高效课堂】 教育科学出版社选择性必修二网络基础
- 神经外科术后并发症观察及护理课件整理
- 脊柱弯曲异常筛查结果记录表
- IATF16949-2016内审员理论考试题库及答案
评论
0/150
提交评论