




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形的内切圆,(一)提出问题,如图,你能否在ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?,例1作圆,使它和已知三角形的各边都相切,(1)作圆的关键是什么?,提出以下几个问题进行讨论:,(2)假设I是所求作的圆,I和三角形三边都相切,圆心I应满足什么条件?,(3)这样的点I应在什么位置?,(4)圆心I确定后半径如何找?,结论:和三角形的各边都相切的圆可以作一个且只可以作出一个,(二)新课,1.什么是三角形的内切圆?,2、想一想,三角形内心和外心的区别?,和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,外心(三角形外接圆的圆心),和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形,3.什么是三角形的内切圆?,(三)应用与反思,例2如图,在ABC中,ABC50,ACB75“,点O是三角形的内心求BOC的度数.,例3如图,ABC中,E是内心,A的平分线和ABC的外接圆相交于点D.求证:DEDB,练习分析作出已知的锐角三角形、直角三角形、钝角三角形的内切圆,并说明三角形的内心是否都在三角形内,(四)小结,1.学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念,2.利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径,3.在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用,能力训练,(A)梯形(B)菱形(C)矩形(D)平行四边形,1、下列图形中,一定有内切圆的四边形是(),2、如图,菱形ABCD中,周长为40,ABC=120,则内切圆的半径为(),(A)(B)(C)(D),3、如图,O是ABC的内切圆,D、E、F是切点,A=50,C=60,则DOE=(),(A)70(B)110(C)120(D)130,4、等边三角形的内切圆半径、外接圆的半径和高的比为(),(A)1(B)12(C)12(D)123,5、存在内切圆和外接圆的四边形一定是(),(A)矩形(B)菱形(C)正方形(D)平行四边形,6、画一个边长为3cm的等边三角形,在画出它的内切圆,7、(山西省,1998)如图,已知点I为ABC的内心,射线AI交ABC的外接圆于点D,交BC边于点E,(1)求证:ID=BD;(2)设ABC外接圆半径R=3,ID=2,AD=x,DE=y,当点A在优弧上运动时,求函数y与自变量x间的函数关系式,并指出自变量的取值范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解析卷北师大版9年级数学上册期中测试卷及答案详解(名师系列)
- 2025年度文艺演出场地租赁合同范本
- 2025年创业合伙人合作协议范本涵盖知识产权归属
- 2025年度电力设备预防性保养维修与节能降耗合同
- 2025年度农产品加工工业品标准买卖合同
- 2025版铁路货运与公路联运综合服务合同
- 2025年度智慧城市建设项目材料采购合同范文
- 2025年度塔吊安装与拆除工程安全责任合同
- 2025年婚内房产共有权设立与子女抚养责任协议
- 2025二手装载机转让合同样本
- 电工技能测试
- 药事管理学全套课件
- 社区心理学课件
- 《中式面点制作第二版》教案高教版
- 看门狗定时器
- 质量整改通知单(样板)
- 进展性脑卒中的诊疗策略课件
- 2020届高三北京高考“多文本阅读”总攻略
- (高职)中外民俗电子课件(全套)
- 《管理学基础》完整版课件全套ppt教程(最新)
- 遵义县偏岩河工程设计说明书(鸭溪镇)
评论
0/150
提交评论