PID控制算法的C语言实现(完整版).doc_第1页
PID控制算法的C语言实现(完整版).doc_第2页
PID控制算法的C语言实现(完整版).doc_第3页
PID控制算法的C语言实现(完整版).doc_第4页
PID控制算法的C语言实现(完整版).doc_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PID控制算法的C语言实现一 PID算法原理 最近两天在考虑一般控制算法的C语言实现问题,发现网络上尚没有一套完整的比较体系的讲解。于是总结了几天,整理一套思路分享给大家。 在工业应用中PID及其衍生算法是应用最广泛的算法之一,是当之无愧的万能算法,如果能够熟练掌握PID算法的设计与实现过程,对于一般的研发人员来讲,应该是足够应对一般研发问题了,而难能可贵的是,在我所接触的控制算法当中,PID控制算法又是最简单,最能体现反馈思想的控制算法,可谓经典中的经典。经典的未必是复杂的,经典的东西常常是简单的,而且是最简单的,想想牛顿的力学三大定律吧,想想爱因斯坦的质能方程吧,何等的简单!简单的不是原始的,简单的也不是落后的,简单到了美的程度。先看看PID算法的一般形式: PID的流程简单到了不能再简单的程度,通过误差信号控制被控量,而控制器本身就是比例、积分、微分三个环节的加和。这里我们规定(在t时刻): 1.输入量为rin(t); 2.输出量为rout(t); 3.偏差量为err(t)=rin(t)-rout(t); pid的控制规律为 理解一下这个公式,主要从下面几个问题着手,为了便于理解,把控制环境具体一下: 1.规定这个流程是用来为直流电机调速的; 2.输入量rin(t)为电机转速预定值; 3.输出量rout(t)为电机转速实际值; 4.执行器为直流电机; 5.传感器为光电码盘,假设码盘为10线; 6.直流电机采用PWM调速 转速用单位 转/min 表示; 不难看出以下结论: 1.输入量rin(t)为电机转速预定值(转/min); 2. 输出量rout(t)为电机转速实际值(转/min); 3.偏差量为预定值和实际值之差(转/min); 那么以下几个问题需要弄清楚: 1.通过PID环节之后的U(t)是什么值呢? 2.控制执行器(直流电机)转动转速应该为电压值(也就是PWM占空比)。 3.那么U(t)与PWM之间存在怎样的联系呢?/user1/3407/archives/2006/33541.html(见附录1)这篇文章上给出了一种方法,即,每个电压对应一个转速,电压和转速之间呈现线性关系。但是我考虑这种方法的前提是把直流电机的特性理解为线性了,而实际情况下,直流电机的特性绝对不是线性的,或者说在局部上是趋于线性的,这就是为什么说PID调速有个范围的问题。具体看一下/component/article90249.htm(见附录2)这篇文章就可以了解了。所以在正式进行调速设计之前,需要现有开环系统,测试电机和转速之间的特性曲线(或者查阅电机的资料说明),然后再进行闭环参数整定。这篇先写到这,下一篇说明连续系统的离散化问题。并根据离散化后的特点讲述位置型PID和增量型PID的用法和C语言实现过程。PID控制算法的C语言实现二 PID算法的离散化 上一节中,我论述了PID算法的基本形式,并对其控制过程的实现有了一个简要的说明,通过上一节的总结,基本已经可以明白PID控制的过程。这一节中先继续上一节内容补充说明一下。 1.说明一下反馈控制的原理,通过上一节的框图不难看出,PID控制其实是对偏差的控制过程; 2.如果偏差为0,则比例环节不起作用,只有存在偏差时,比例环节才起作用。 3.积分环节主要是用来消除静差,所谓静差,就是系统稳定后输出值和设定值之间的差值,积分环节实际上就是偏差累计的过程,把累计的误差加到原有系统上以抵消系统造成的静差。 4.而微分信号则反应了偏差信号的变化规律,或者说是变化趋势,根据偏差信号的变化趋势来进行超前调节,从而增加了系统的快速性。 好了,关于PID的基本说明就补充到这里,下面将对PID连续系统离散化,从而方便在处理器上实现。下面把连续状态的公式再贴一下: 假设采样间隔为T,则在第K T时刻:偏差err(K)=rin(K)-rout(K);积分环节用加和的形式表示,即err(K)+err(K+1)+;微分环节用斜率的形式表示,即err(K)-err(K-1)/T;从而形成如下PID离散表示形式:则u(K)可表示成为:至于说Kp、Ki、Kd三个参数的具体表达式,我想可以轻松的推出了,这里节省时间,不再详细表示了。其实到这里为止,PID的基本离散表示形式已经出来了。目前的这种表述形式属于位置型PID,另外一种表述方式为增量式PID,由U上述表达式可以轻易得到:那么:这就是离散化PID的增量式表示方式,由公式可以看出,增量式的表达结果和最近三次的偏差有关,这样就大大提高了系统的稳定性。需要注意的是最终的输出结果应该为u(K)+增量调节值;PID的离散化过程基本思路就是这样,下面是将离散化的公式转换成为C语言,从而实现微控制器的控制作用。PID控制算法的C语言实现三 位置型PID的C语言实现 上一节中已经抽象出了位置性PID和增量型PID的数学表达式,这一节,重点讲解C语言代码的实现过程,算法的C语言实现过程具有一般性,通过PID算法的C语言实现,可以以此类推,设计其它算法的C语言实现。 第一步:定义PID变量结构体,代码如下:struct _pid float SetSpeed; /定义设定值 float ActualSpeed; /定义实际值 float err; /定义偏差值 float err_last; /定义上一个偏差值 float Kp,Ki,Kd; /定义比例、积分、微分系数 float voltage; /定义电压值(控制执行器的变量) float integral; /定义积分值pid;控制算法中所需要用到的参数在一个结构体中统一定义,方便后面的使用。 第二部:初始化变量,代码如下:void PID_init() printf(PID_init begin n); pid.SetSpeed=0.0; pid.ActualSpeed=0.0; pid.err=0.0; pid.err_last=0.0; pid.voltage=0.0; egral=0.0; pid.Kp=0.2; pid.Ki=0.015; pid.Kd=0.2; printf(PID_init end n);统一初始化变量,尤其是Kp,Ki,Kd三个参数,调试过程当中,对于要求的控制效果,可以通过调节这三个量直接进行调节。第三步:编写控制算法,代码如下:float PID_realize(float speed) pid.SetSpeed=speed; pid.err=pid.SetSpeed-pid.ActualSpeed; egral+=pid.err; pid.voltage=pid.Kp*pid.err+pid.Ki*egral+pid.Kd*(pid.err-pid.err_last); pid.err_last=pid.err; pid.ActualSpeed=pid.voltage*1.0; return pid.ActualSpeed;注意:这里用了最基本的算法实现形式,没有考虑死区问题,没有设定上下限,只是对公式的一种直接的实现,后面的介绍当中还会逐渐的对此改进。 到此为止,PID的基本实现部分就初步完成了。下面是测试代码:int main() printf(System begin n); PID_init(); int count=0; while(count1000) float speed=PID_realize(200.0); printf(%fn,speed); count+; return 0;下面是经过1000次的调节后输出的1000个数据(具体的参数整定过程就不说明了,网上这种说明非常多):83.00000111.55500059.55967528.17540852.90742138.94415251.89169946.14165153.33905451.50999855.90845055.94463158.97068059.88293662.22500163.53725465.52770767.01105868.81064670.35531872.04204073.59565875.20762076.74544478.30152679.81213681.32192982.80030484.26890985.71310887.14345588.55300589.94696091.32207892.68099694.02223495.34718696.65524297.94718099.222808100.482601101.726572102.955049104.168125105.366066106.549019107.717187108.870756110.009898111.134811112.245652113.342615114.425860115.495564116.551897117.595029118.625116119.642331120.646826121.638767122.618307123.585603124.540813125.484079126.415549127.335383128.243715129.140691130.026459130.901149131.764909132.617870133.460162134.291942135.113308135.924419136.725382137.516332138.297401139.068697139.830352140.582499141.325237142.058701142.782985143.498218144.204509144.901969145.590726146.270843146.942486147.605718148.260674148.907425149.546109150.176794150.799612151.414626152.021959152.621696153.213951153.798781154.376315154.946626155.509812156.065958156.615146157.157471157.693012158.221871158.744097159.259826159.769078160.271991160.768588161.258996161.743264162.221494162.693737163.160075163.620593164.075347164.524422164.967877165.405795165.838235166.265257166.686967167.103377167.514610167.920681168.321682168.717670169.108719169.494862169.876198170.252740170.624605170.991799171.354406171.712487172.066080172.415265172.760077173.100594173.436838173.768895174.096796174.420594174.740352175.056096175.367915175.675818175.979886176.280136176.576656176.869444177.158600177.444121177.726087178.004510178.279458178.550967178.819094179.083860179.345315179.603504179.858466180.110241180.358866180.604388180.846849181.086262181.322699181.556172181.786733182.014396182.239222182.461226182.680475182.896971183.110768183.321881183.530369183.736239183.939545184.140301184.338555184.534321184.727651184.918558185.107080185.293243185.477080185.658625185.837886186.014930186.189745186.362382186.532859186.701207186.867437187.031605187.193713187.353802187.511884187.667997187.822151187.974384188.124700188.273148188.419728188.564488188.707429188.848592188.987995189.125644189.261576189.395801189.528364189.659258189.788528189.916170190.042233190.166702190.289633190.411007190.530867190.649236190.766119190.881544190.995531191.108087191.219243191.329005191.437382191.544428191.650111191.754504191.857565191.959350192.059857192.159119192.257135192.353919192.449511192.543890192.637105192.729137192.820032192.909776192.998410193.085920193.172360193.257700193.341993193.425214193.507408193.588568193.668715193.747847193.826004193.903175193.979391194.054643194.128963194.202349194.274828194.346393194.417073194.486854194.555777194.623820194.691027194.757390194.822919194.887626194.951536195.014633195.076965195.138496195.199273195.259270195.318547195.377060195.434856195.491918195.548283195.603919195.658886195.713145195.766734195.819654195.871912195.923517195.974472196.024791196.074478196.123558196.172016196.219859196.267115196.313778196.359851196.405363196.450296196.494672196.538492196.581753196.624494196.666678196.708363196.749493196.790138196.830267196.869889196.909019196.947656196.985803197.023493197.060701197.097449197.133733197.169558197.204940197.239872197.274378197.308436197.342089197.375309197.408125197.440523197.472520197.504114197.535309197.566127197.596546197.626594197.656258197.685546197.714486197.743047197.771265197.799113197.826629197.853799197.880631197.907131197.933284197.959122197.984629198.009823198.034705198.059275198.083520198.107481198.131129198.154493198.177566198.200349198.222843198.245062198.267001198.288662198.310059198.331178198.352049198.372645198.392982198.413066198.432911198.452499198.471846198.490953198.509819198.528439198.546842198.565003198.582945198.600648198.618147198.635415198.652474198.669313198.685955198.702378198.718611198.734625198.750448198.766067198.781497198.796736198.811776198.826628198.841303198.855788198.870087198.884218198.898162198.911943198.925538198.938970198.952229198.965320198.978257198.991033199.003643199.016092199.028390199.040542199.052536199.064373199.076067199.087617199.099019199.110280199.121407199.132381199.143240199.153940199.164511199.174957199.185270199.195457199.205514199.215440199.225262199.234930199.244503199.253928199.263275199.272468199.281571199.290541199.299421199.308165199.316815199.325345199.333789199.342115199.350336199.358462199.366479199.374396199.382228199.389943199.397586199.405110199.412555199.419891199.427152199.434307199.441389199.448363199.455264199.462073199.468802199.475442199.481995199.488475199.494857199.501183199.507404199.513578199.519639199.525656199.531579199.537437199.543230199.548936199.554583199.560149199.565647199.571073199.576436199.581730199.586961199.592118199.597220199.602260199.607218199.612132199.616974199.621764199.626486199.631156199.635757199.640316199.644808199.649249199.653636199.657959199.662246199.666457199.670635199.674752199.678815199.682833199.686798199.690715199.694583199.698409199.702177199.705905199.709582199.713209199.716788199.720339199.723826199.727276199.730690199.734054199.737378199.740657199.743901199.747111199.750260199.753393199.756474199.759526199.762524199.765490199.768422199.771314199.774169199.776992199.779775199.782527199.785247199.787938199.790590199.793204199.795787199.798338199.800860199.803343199.805802199.808225199.810624199.812986199.815326199.817642199.819915199.822175199.824388199.826587199.828755199.830902199.833006199.835097199.837155199.839194199.841210199.843191199.845168199.847096199.849024199.850905199.852784199.854621199.856449199.858238199.860016199.861757199.863486199.865199199.866879199.868549199.870186199.871813199.873419199.874997199.876563199.878109199.879620199.881136199.882613199.884088199.885527199.886971199.888371199.889783199.891142199.892518199.893845199.895180199.896485199.897783199.899057199.900322199.901562199.902797199.904010199.905222199.906392199.907576199.908720199.909875199.910985199.912108199.913193199.914287199.915352199.916423199.917459199.918505199.919527199.920526199.921513199.922496199.923452199.924415199.925348199.926275199.927198199.928108199.929019199.929903199.930788199.931653199.932509199.933353199.934187199.935002199.935816199.936617199.937420199.938195199.938971199.939733199.940477199.941228199.941961199.942685199.943392199.944111199.944804199.945491199.946181199.946854199.947518199.948165199.948824199.949456199.950083199.950714199.951326199.951930199.952532199.953125199.953714199.954290199.954863199.955424199.955979199.956538199.957073199.957623199.958146199.958671199.959189199.959693199.960203199.960689199.961191199.961665199.962156199.962619199.963098199.963543199.964014199.964448199.964907199.965330199.965772199.966201199.966625199.967046199.967458199.967868199.968263199.968664199.969047199.969437199.969817199.970193199.970565199.970943199.971297199.971668199.972011199.972363199.972712199.973047199.973388199.973726199.974049199.974379199.974699199.975014199.975326199.975645199.975939199.976249199.976546199.976832199.977125199.977414199.977688199.977969199.978247199.978525199.978782199.979061199.979312199.979576199.979825199.980077199.980335199.980569199.980812199.981053199.981300199.981522199.981755199.981984199.982213199.982427199.982648199.982860199.983080199.983298199.983501199.983704199.983914199.984114199.984309199.984500199.984698199.984887199.985079199.985262199.985442199.985623199.985803199.985984199.986170199.986327199.986508199.986668199.986846199.987006199.987169199.987321199.987481199.987633199.987800199.987948199.988094199.988237199.988386199.988526199.988675199.988815199.988965199.989090199.989231199.989359199.989491199.989629199.989757199.989889199.990012199.990133199.990253199.990373199.990493199.990614199.990734199.990854199.990960199.991072199.991180199.991289199.991398199.991507199.991616199.991718199.991837199.991922199.992025199.992123199.992214199.992314199.992412199.992503199.992604199.992701199.992792199.992878199.992967199.993047199.993136199.993216199.993305199.993385199.993474199.993554199.993637199.993726199.993806199.993881199.993952199.994024199.994101199.994170199.994241199.994313199.994391199.994459199.994531199.994602199.994680199.994748199.994805199.994868199.994928199.994989199.995049199.995109199.995175199.995226199.995295199.995346199.995416199.995466199.995536199.995593199.995653199.995713199.995759199.995811199.995859199.995902199.995960199.995999199.996051199.996100199.996148199.996191199.996249199.996288199.996340199.996389199.996438199.996480199.996538199.996578199.996629199.996678199.996712199.996746199.996787199.996824199.996855199.996896199.996927199.996967199.997005199.997036199.997076199.997113199.997145199.997185199.997216199.997256199.997294199.997325199.997365199.997403199.997434199.997474199.997512199.997543199.997583199.997614199.997640199.997669199.997689199.997711199.997740199.997760199.997789199.997809199.997838199.997858199.997880199.997909199.997929199.997958199.997978199.998007199.998027199.998049199.998078199.998098199.998127199.998147199.998170199.998199199.998218199.998247199.998267199.998296199.998316199.998339199.998368199.998387199.998416199.998436199.998459199.998488199.998508199.998537199.998556199.998585199.998590199.998605199.998616199.998634199.998642199.998654199.998665199.998676199.998694199.998702199.998714199.998725199.998743199.998745199.998766199.998774199.998785199.998803199.998805199.998826199.998834199.998845199.998863199.998871199.998883199.998894199.998905199.998923199.998931199.998943199.998954199.998972199.998974199.998995199.999003199.999014199.999032199.999034199.999055199.999063199.999074199.999092199.999094199.999115199.999123199.999135199.999152199.999161199.999172199.999183199.999201199.999203199.999224199.999232199.999243199.999261199.999263199.999284199.999292199.999304199.999321199.999323199.999344199.999352199.999364199.999381199.999390199.999401199.999412199.999430199.999432199.999453199.999461199.999473PID控制算法的C语言实现四 增量型PID的C语言实现 上一节中介绍了最简单的位置型PID的实现手段,这一节主要讲解增量式PID的实现方法,位置型和增量型PID的数学公式请参见我的系列文PID控制算法的C语言实现二中的讲解。实现过程仍然是分为定义变量、初始化变量、实现控制算法函数、算法测试四个部分,详细分类请参加PID控制算法的C语言实现三中的讲解,这里直接给出代码了。#include#includestruct _pid float SetSpeed; /定义设定值 float ActualSpeed; /定义实际值 float err; /定义偏差值 float err_next; /定义上一个偏差值 float err_last; /定义最上前的偏差值 float Kp,Ki,Kd; /定义比例、积分、微分系数pid;void PID_init() pid.SetSpeed=0.0; pid.ActualSpeed=0.0; pid.err=0.0; pid.err_last=0.0; pid.err_next=0.0; pid.Kp=0.2; pid.Ki=0.015; pid.Kd=0.2;float PID_realize(float speed) pid.SetSpeed=speed; pid.err=pid.SetSpeed-pid.ActualSpeed; float incrementSpeed=pid.Kp*(pid.err-pid.err_next)+pid.Ki*pid.err+pid.Kd*(pid.err-2*pid.err_next+pid.err_last); pid.ActualSpeed+=incrementSpeed; pid.err_last=pid.err_next; pid.err_next=pid.err; return pid.ActualSpeed;int main() PID_init(); int count=0; while(count1000) float speed=PID_realize(200.0); printf(%fn,speed); count+; return 0;运行后的1000个数据为:83.00000011.55500059.55967728.17540652.90742538.94414951.89170146.14165553.33905051.51000255.90844755.94463758.97067659.88294262.22499863.53724765.52770267.01104768.81063870.35530972.04202373.59564275.20760376.74543078.30151479.81212681.32191582.80029384.26889885.71309787.14344088.55299489.94694591.32206792.68097794.02222495.34717696.65523597.94717499.222801100.482597101.726562102.955040104.168114105.366058106.549004107.717178108.870743110.009888111.134796112.245636113.342598114.425842115.495552116.551880117.595009118.625099119.642311120.646812121.638756122.618294123.585594124.540794125.484062126.415535127.335365128.243698129.140671130.026443130.901138131.764893132.617859133.460159134.291931135.113297135.924408136.725372137.516327138.297394139.068695139.830353140.582489141.325226142.058685142

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论