四点共圆基本判断方法(超全).ppt_第1页
四点共圆基本判断方法(超全).ppt_第2页
四点共圆基本判断方法(超全).ppt_第3页
四点共圆基本判断方法(超全).ppt_第4页
四点共圆基本判断方法(超全).ppt_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Key.四点共圆的证明五个基本判断方法:1.若四个点到一个定点的距离相等,则这四个点共圆。2.若一个四边形的一组对角互补(和为180),则这个四边形的四个点共圆。3.若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。5.同斜边的直角三角形的顶点共圆。,1.若四个点到一个定点的距离相等,则这四个点共圆。,如图,菱形ABCD的对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DA的中点,求证:E,F,G,H四个点在以O为圆心的同一个圆上,分析指导:利用直角三角形斜边的中点等于斜边的一半,再利用菱形的四边相等即可证出。,2.若一个四边形的一组对角互补(和为180),则这个四边形的四个点共圆,若A+C=180或B+D=180,则点A、B、C、D四点共圆,已知:四边形ABCD中,A+C=180求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆,证明:用反证法过A,B,D作圆O,假设C不在圆O上,则C在圆外或圆内,若C在圆外,设BC交圆O于C,连结DC,根据圆内接四边形的性质得A+DCB=180,A+C=180DCB=C这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。C在圆O上,也即A,B,C,D四点共圆。,3.若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。,若B=CDE,则A、B、C、D四点共圆证法同上,例如图所示,已知四边形ABCD是平行四边形,过点A和点B的圆与AD、BC分别交于E、F点。求证:C、D、E、F四点共圆。,分析:欲证C、D、E、F四点共圆,可证以该四点构成的四边形中,一组对角互补或外角等于内对角即可。由此,连接EF构成四边形EFCD后,证明BFE=D即可。证明:连接EF,四边形ABFE是圆内接四边形,A+BFE=180。又四边形ABCD是平行四边形,A+D=180。BFE=D。C、D、E、F四点共圆,4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆。,若A=D或ABD=ACD,则A、B、C、D四点共圆,用反证法:已知:同侧ABC和CBD,共有底边CB,A=D,求证:A、B、C、D四点共圆证明:假设四点不在同一圆上,作ABC外接圆,则D点不在圆上,因二角共用AB弧,则AD,与实际不符,所以只有D点在ABC外接圆上,故A、B、C、D四点共圆。,5.同斜边的直角三角形的顶点共圆如图1,四边形ABCD中,A=C=90,求证:A、B、C、D四点共圆.如图2,A=C=90,求证:A、B、C、D四点共圆.分析指导:可以直接根据圆的定义证明A、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论