




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
动态几何问题的解题技巧解这类问题的基本策略是:1动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性2动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系3以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变。这类问题与函数相结合时,注意使用分类讨论的思想,运用方程的思想、数形结合思想、转化的思想等。1、在ABC中,C=90,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图,是旋转得到的三种图形。(1)观察线段PD和PE之间的有怎样的大小关系,并以图为例,加以说明;(2)PBE是否构成等腰三角形?若能,指出所有的情况(即求出PBE为等腰三角形时CE的长,直接写出结果);若不能请说明理由。2、如图,等腰RtABC(ACB90)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让ABC沿这条直线向右平移,直到点A与点E重合为止设CD的长为x,ABC与正方形DEFG重合部分(图中阴影部分)的面积为y, (1)求y与x之间的函数关系式; (2)当ABC与正方形DEFG重合部分的面积为时,求CD的长3、在平面直角坐标系中,直线过点A(2,0)且与平行,直线过点B(0,1)且与平行,直线与相交于点P。点E为直线上一点,反比例函数且k2)的图象过点E且与直线相交于点F.(1)写出点E、点F的坐标(用的代数式表示);(2)求的值;(3)连接OE、OF、EF,若OEF为直角三角形,求的值。备用图4、如图,在RtABC中,C=90,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动过点P作PEBC交AD于点E,连接EQ设动点运动时间为t秒(t0)(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行为什么?(3)当t为何值时,EDQ为直角三角形答案:1、解:1)PD=PE。以图为例,连接PCABC是等腰直角三角形,P为斜边AB的中点,PC=PB,CPAB,DCP=B=45,又DPC+CPE=90,CPE+EPB=90DPC=EPBDPCEPB(AAS)PD=PE2)能,当EP=EB时,CE=BC=1当EP=PB时,点E 在BC上,则点E和C重合,CE=0当BE=BP时,若点E在BC上,则CE=若点E在CB的延长线上,则CE=2、3、解:(1)直线l1经过点A(2,0)且与y轴平行,直线l2经过点B(0,1)且与x轴平行,当y=1时,x=k;当x=2时,y=,E(k,1),F(2,);(2)当0k2时,;当k2时,。(3)当OEF=90时,OEB+EOB=OEB+PEF=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文山州麻栗坡县消防救援大队招聘考试真题2024
- 国殇考试题及答案
- 历年考试题及答案
- 中级财务会计学(安徽财经大学)知到智慧树答案
- 中级微观经济学(双语)(山东联盟)知到智慧树答案
- 中外陶瓷商务英语知到智慧树答案
- 血液肿瘤科PICC专项技术理论考题(附答案)
- 2025版商品房认购及智能家居安装协议范本
- 2025年度专业地板砖铺装施工服务合同
- 2025版汽车经销商品牌授权及销售支持合同
- 小儿上呼吸道感染
- 2025年CCAA国家注册审核员考试(产品认证基础)历年参考题库含答案详解(5卷)
- 2025-2030中国骨科手术导航机器人医生培训体系与手术量增长关联报告
- 北京市西城区2024-2025学年七年级下学期期末道德与法治试题(解析版)
- 苏州工业园区外国语学校语文新初一均衡分班试卷
- 《智能建造概论》高职完整全套教学课件
- 2025-2026小学学年度第一学期教学工作安排表:启智育心绘蓝图筑梦前行谱新篇
- GB/T 30807-2025建筑用绝热制品浸泡法测定长期吸水性
- 无限极中医秋季养生课件
- GB/T 23806-2025精细陶瓷断裂韧性试验方法单边预裂纹梁(SEPB)法
- 妇科常规手术器械处理流程
评论
0/150
提交评论