特征值特征向量的计算.ppt_第1页
特征值特征向量的计算.ppt_第2页
特征值特征向量的计算.ppt_第3页
特征值特征向量的计算.ppt_第4页
特征值特征向量的计算.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

定义1设A为n阶方阵,X是n维向量,如果存在数l,使方程AX=lX有非零解,则称l为矩阵A的特征值,相应的非零解称为A的属于l的特征向量,方程AX=lX,AX-lX=O,(A-lE)X=O,特征值:使n元齐次方程AX=lX有非零解的数l0,A的对应于l0的特征向量:,即不论l取何值,方程AX=lX一定有解,43矩阵的特征值和特征向量,例如:对,取l=4,代入方程AX=lX,(A-4E)X=O,有非零解,所以,l=4是矩阵A的一个特征值,对,取,得一个基础解系,则方程(A-4E)X=O的全部解为:,c为任意常数,A的属于l=4的特征向量:,c0,1、求n阶方阵A的特征值:,数l0是A的特征值,l0使方程AX=lX有非零解,因此:l0是A的特征值,l0使成立,求A的特征值步骤:,(1)计算n阶行列式,解得方程的根l1,l2,ln,,则l1,l2,ln即是A的特征值,设,则方程即是的n次方程,在复数域上,方程一定有n个根。,方程,定义2设A为n阶方阵,为其特征值组,则其特征方程可表示为:,则称为的代数重数(重数),而特征子空间的维数称为几何重数(度数)。,显然:,解:,令,得l1=-1,l2=7,则A的特征值为l1=-1,l2=7,【例1】求的特征值,2、求A的属于特征值l的特征向量,设li是A的特征值,则方程AX=li,X有非零解.,即方程(A-liE)X=O有非零解,,方程组(A-liE)X=O的全部非零解,A的对应于特征值li的特征向量:,2)求出(A-liE)X=O的一个基础解系V1、V2、Vs,步骤:1)把l=li代入方程(A-liE)X=O,得一齐次线性方程组(A-liE)X=O,3)A的属于特征值li的特征向量为:,是不全为零任意常数,【例2】求矩阵的特征值与特征向量,解:,得l1=2,l2=l3=1(二重根),则A的特征值为l1=2,l2=l3=1,把l1=2代入方程(A-lE)X=O,得,(A-2E)X=O,得一基础解系,于是,A的属于l1=2的全部特征向量为:,把l2=l3=1代入方程(A-lE)X=O,得,(A-E)X=O,于是,A的属于2=1的全部特征向量为:,解:,得1=-2,2=3=7(二重根),则A的特征值为1=-2,2=3=7,把l1=-2代入方程(A-lE)X=O,得,(A+2E)X=O,【例3】求矩阵的特征值与特征向量,于是,A的属于l1=-2的全部特征向量为:,把l2=l3=7代入方程(A-lE)X=O,得,令分别取,,得基础解系,于是,A的属于l2=l3=7的全部特征向量为:,定理1n阶方阵A的不同特征值对应的特征向量线性无关。,即若是属于特征值l1的特征向量,是属于特征值l2的特征向量,证明:设l1、l2、lm是A的m个不同的特征值,a1、a2、am是分别属于l1、l2、lm的特征向量,,即是方程的非零解,要证:线性无关,设:,即有,且,在(1)式两边左乘A,得,在(2)式两边左乘A,得,做矩阵乘积:,,即B可逆,不同特征值对应的特征向量线性无关,所以:,则:,定理2设l是A的特征值,a是A的属于l的特征向量,则:(1)kl是kA的特征值(k为任意常数)(2)lm是Am的特征值(m为正整数)(3)当A可逆时,l0,且l-1是A-1的特征值,因为a是A的属于l的特征向量,,即a是方程AX=lX的非零解,,所以有Aa=la且a0,证(1):kl是kA的特征值,且a0,,所以a是方程kAX=klX的非零解,kl是kA的特征值,因为(kA)a,要证方程(kA)X=(k)X有非零解,=k(Aa),=k(la),=(kl)a,先证当A可逆时,l0:,反证:若不然,l=0,由Aa=la,,得Aa=0,证(3)当A可逆时,l0,且l-1是A-1的特征值,再证l-1是A-1的特征值:,因为Aa=la,,两边左乘A-1,得,即a是方程A-1X=l-1X的非零解,故l-1是A-1的特征值,【例4】设四阶方阵A满足求的一个特征值。,解:,即A可逆,由,所以l=-3是A的一个特征值,且由,再由定理2的(1)可知:,定理3矩阵A与其转置矩阵A有相同的特征值,证明:,即A与A有相同的特征多项式,故A与A有相同的特征值,定理4设l1、l2、ln是A的n个特征值,则,说明(1)利用本定理结论(1)可检验所求的特征值是否正确。,(2)由结论(2)可得性质:,(1)l1+l2+ln=a11+a22+ann,(2)l1l2ln,定义3若T为可逆矩阵,对矩阵A、B,若:,则称A与B相似。,定理5若矩阵A、B相似,则A、B具有相同的本征值。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论