




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考导航函数作为高中数学的基础内容之一,在各个知识间起到“中枢”的作用,其概念与性质在高考中,主要考查函数的表示方法(图象、解析式)、分段函数、单调区间、最值的求解,函数的奇偶性和周期性的判断,以及函数性质的综合运用等,试题的难度不大;函数的应用体现了新高考考查应用的理念,在高考中主要体现在函数零点个数的判断、零点取值范围、函数零点与函数图象、方程的解等问题上.构建函数模型解决实际问题是函数模型应用考查的热点、重点.,热点一分段函数求值问题,解决此类问题的关键是要根据分段函数的定义,求解函数值时要先判断自变量的取值区间,然后再代入相应的函数解析式求值,在求值过程中灵活运用对数恒等式进行化简求值.,解析因为21,log212log2831,所以f(2)1log22(2)1log243,f(log212)21126,故f(2)f(log212)369.,答案9,探究提高本题的难点有两个,一是准确理解分段函数的定义,自变量在不同取值范围内对应着不同的函数解析式;二是对数与指数的综合运算问题.,答案3,热点二函数性质的三个命题角度,函数的性质是基本初等函数最核心的知识,主要包括:函数的单调性、周期性、奇偶性、有界性,以及函数图象的对称性、函数的定义域和值域等.对于函数性质问题,重在灵活运用,巧妙构建,便可实现函数问题的巧思妙解.,答案(0,1,命题角度一已知函数解析式求函数定义域,命题角度二基本初等函数性质的判断,f(x)是偶函数;f(x)是增函数;f(x)是周期函数;f(x)的值域为1,).则上述结论正确的是_(填序号).,答案,探究提高(1)函数单调性的实质就是自变量与函数值的变化是否同向.判断函数单调性的方法主要有:定义法、导数法和图象法,而判断复合函数单调性主要依据同增异减的规律.(2)判断函数奇偶性主要是利用定义法,即先判断其定义域是否关于原点对称,然后判断f(x)与f(x)的关系,若两者相等,则为偶函数;若两者互为相反数,则为奇函数.(3)若f(x)为周期函数,则存在非零常数T,使得f(xT)f(x)对定义域内的每一个自变量x都成立.,答案,命题角度三函数性质的综合应用,【例4】已知偶函数f(x)在0,)上单调递减,f(2)0.若f(x1)0,则x的取值范围是_.,解析因为f(x)为偶函数,所以f(x)f(x)f(|x|),故不等式f(x1)0可化为f(|x1|)0.因为f(x)在0,)上单调递减,且f(2)0,所以|x1|2,即2x12,解得1x3.所以x的取值范围是(1,3).,答案(1,3),探究提高函数性质的综合应用主要包括利用函数性质求值、解不等式与比较大小三个方面:求值的关键是利用函数的奇偶性、对称性以及函数的周期性将自变量转化到指定区间内,然后代入函数解析式求值;解不等式问题主要利用函数的奇偶性与单调性等将函数值的大小转化为自变量之间的大小关系求解;比较大小问题主要利用奇偶性、周期性、对称性把要比较的几个值转化到同一区间上或对称区间上,再利用函数的单调性解决.,【训练4】(2015南京师大附中模拟)设函数f(x)是定义在R上的偶函数,且在区间0,)上单调递增,则满足不等式f(1)f(lg(2x)的x的取值范围是_.,热点三函数与方程的求解问题,函数的零点与方程的解、函数图象等问题密切相关,该部分的重点主要包括以下四个方面:(1)函数零点所在区间的确定;(2)函数零点个数的判断;(3)函数零点近似值的求解;(4)由函数零点所在范围或函数零点个数求解参数的取值范围等.在高考试题中多作为填空题进行考查,难度中等偏下.,(1)若a1,则f(x)的最小值为_;(2)若f(x)恰有2个零点,则实数a的取值范围是_.,探究提高解决分段函数与函数零点的综合问题的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式求解零点,注意取值范围的大前提,以及函数性质和数形结合在判断零点个数时的强大功能.,【训练5】(1)(2015南通、扬州等五市模拟)已知函数f(x)对任意的xR满足f(x)f(x),且当x0时,f(x)x2ax1.若f(x)有4个零点,则实数a的取值范围是_.,答案(1)(2,)(2)6,热点四构建函数模型解决实际问题,对函数模型应用的考查,以根据已知条件构建函数模型解决实际问题为热点考向,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现,考查用函数知识解决以社会实际生活为背景的成本最低、利润最高、产量最大、效益最好、用料最省等实际问题.,(1)若一次喷洒4个单位的净化剂,则净化空气的时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a(1a4)个单位的净化剂,要使接下来的4天中能够持续有效净化空气,试求a的最小值(精确到0.1,参考数据龙江:1.4).,探究提高(1)构建函数模型的重点题型及策略,(2)特别提醒构建函数模型时不要忘记考虑函数的定义域.对构建的较复杂的函数模型,要适时地用换元法转化为熟悉的函数问题求解.,【训练6】(2015镇江模拟)某校为了落实“每天阳光运动一小时”活动,决定将原来的矩形操场ABCD(其中AB60米,AD40米)扩建成一个更大的矩形操场AMPN(如图),要求:B在AM上,D在AN上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文化旅游项目代理合同
- 2025年连锁加盟意向协议
- 2025年度酒店安全托管运营合作协议书
- 中国邮政2025鄂尔多斯市秋招法律事务岗位面试模拟题及答案
- 四平市烟草公司2025秋招会计核算岗位高频笔试题库含答案
- 黄冈市烟草公司2025秋招法务岗位高频笔试题库含答案
- 施肥罐基础施工方案
- 中卫沙坡头区中烟工业2025秋招生产调度岗位面试模拟题及答案
- 河南防水墙施工方案
- 中国邮政2025黑龙江省秋招揽投部储备干部岗位面试模拟题及答案
- 岗位任职资格要求表
- 麻醉学科建设与管理
- 北师大版六年级数学上册-观察的范围
- 底流式消能池水力计算
- 矿山越界采矿调查报告样板(19.05)
- 信息技术学习评价表
- 08K507-1 管道与设备绝热-保温(有水印)
- 智能会议系统施工方案及方法
- 成都某市政道路竣工总结及工程质量自评报告
- 雾都孤儿读书笔记3000字(三篇)
- 高中生性教育
评论
0/150
提交评论