




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2节平面向量基本定理及其坐标表示,知识链条完善把散落的知识连起来,【教材导读】1.平面内任何两个向量都可以做为一组基底吗?提示:不能,共线的两个向量不可以.2.向量的坐标与表示该向量的有向线段的起点、终点的具体位置是否有关?提示:无关.表示向量的有向线段可以自由平移,它的起点、终点随之变化,但此向量的坐标不变.,知识梳理,1.平面向量基本定理如果e1,e2是同一平面内的两个向量,那么对于这一平面内的任一向量a,存在唯一一对实数1,2,使a=.我们把不共线的向量e1,e2叫作表示这一平面内所有向量的一组基底.2.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个.i,j作为基底,a为坐标平面内的任意向量,由平面向量基本定理知,有且只有一对实数x,y,使得a=xi+yj,这样,平面内的任一向量a都可由x,y唯一确定,我们把实数对叫作向量a的坐标,记作.,不共线,1e1+2e2,单位向量,(x,y),a=(x,y),3.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),则ab=;(2)若a=(x,y),则a=(x,y).4.(1)定理:若两个向量(与坐标轴不平行)平行,则它们相应的坐标成比例.(2)定理:若两个向量相对应的坐标成比例,则它们平行.,(x1x2,y1y2),夯基自测,解析:选项A中e1+e2=(,2)(,R),不存在使(,2)=(3,2),可排除选项A.选项C,D中e1e2,但与a不共线,则a不能由e1,e2表示,设(3,2)=x(-1,2)+y(5,-2)=(-x+5y,2x-2y)(x,yR),可得x=2,y=1,所以选项B中的e1,e2可把a表示出来.故选B.,1.(2014高考福建卷)在下列向量组中,可以把向量a=(3,2)表示出来的是()(A)e1=(0,0),e2=(1,2)(B)e1=(-1,2),e2=(5,-2)(C)e1=(3,5),e2=(6,10)(D)e1=(2,-3),e2=(-2,3),B,A,3.若向量a=(1,1),b=(-1,1),c=(4,2),则c=(用a,b表示).,答案:3a-b,解析:中,由于a,b共线,不能作平面向量的基底,错误;正确;向量平移后不变,错误;当x2=0或y2=0时,不成立.,答案:,考点专项突破在讲练中理解知识,考点一平面向量基本定理及其应用,反思归纳,(1)用基底表示平面上的其他向量,其方法是:先选择一组不共线的基底,通过向量的加、减、数乘运算,把其他相关的向量用这一组基底表示出来,有时还要利用向量相等建立方程组,解出某些相关的值.(2)要熟练运用平面几何的一些性质定理.,解:由已知得a=(5,-5),b=(-6,-3),c=(1,8).(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).,反思归纳,向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.,【即时训练】(2015广东模拟)已知向量a=(5,2),b=(-4,-3).c=(x,y),若3a-2b+c=0,则c等于()(A)(-23,-12)(B)(23,12)(C)(7,0)(D)(-7,0),解析:因为向量a=(5,2),b=(-4,-3),c=(x,y),且3a-2b+c=0,所以c=2b-3a=2(-4,-3)-3(5,2)=(-23,-12).故选A.,答案:(1)A,答案:(2)C(-4,-2),反思归纳,(1)向量共线的两种表示形式设a=(x1,y1),b=(x2,y2),aba=b(b0);abx1y2-x2y1=0.(2)两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.,备选例题,答案:16,易混易错辨析用心练就一双慧眼,忽视平面向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第一节 足球说课稿-2025-2026学年高中体育人教版2019必修第一册-人教版
- 内蒙古自治区公考真题2025
- 诸神办事处求取上上签(说课稿)2025-2026学年初三下学期教育主题班会
- 橡胶厂加班申请管理制度
- 2025年上海市物业服务合同范本(合同版本)
- 化肥厂保养供应商评估规定
- 2025文艺活动策划委托合同
- 快递公司员工劳动合同协议
- 化肥原料采购质量保证合同协议
- Unit 4 Humour Lesson 2 Why do we need humour 教案 -2024-2025学年高中英语北师大版(2019)选择性必修第二册
- 事业法人登记管理办法
- 承装修试许可证管理办法
- 2025楼宇平方效益评价规范
- 术后并发症护理
- 第9课《天上有颗“南仁东星”》课件 2025-2026学年统编版八年级语文上册
- 餐饮服务食品安全常规项目自查记录表
- 粪污清运服务管理制度
- 医疗机构动火管理制度
- 孵化基地制度管理制度
- 中枢整合康复技术课件
- DB31/T 936-2015车载终端与手机互联应用规范第1部分:通用技术规范
评论
0/150
提交评论