




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-本文为网络收集精选范文、公文、论文、和其他应用文档,如需本文,请下载-ADF检验中滞后长度的选择基于ARIMA(0,1,q)过程的模拟证据(1)的论文本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!【摘要】在进行adf检验时如何确定一个最优的滞后长度一直是研究者们关注的问题。最近的研究表明,不同的滞后长度选择方法对adf检验的统计推断影响很大。本文在已有研究的基础上,模拟了更为一般的arima(0,1,q)过程,分析了在不同的数据生成过程、检验式以及样本容量下,各种滞后长度选择方法对adf检验功效和实际检验水平的影响,最后认为修正的信息准则通常具有较合理的实际检验水平,而从一般到特殊法具有更为稳健的adf检验性质。 关键词 adf检验 滞后长度 信息准则 修正的信息准则 从一般到特殊法 abstract: the optimal lag length in estimating augmented dickey-fuller statistics have been concentrated on for years. previous research indicated that different leg length selection models affect a lot on the statistical inference of adf test. based on all the researches available, this paper simulates a more general arima(0,1,q) process and analyzes the influence of lag length selection criterions to the size and power of the adf test with different data generating processes, adf regressions, and sample sizes. finally, it is proved that the modified information criteria always shows a more proper size and the general to special criteria has more robust properties in adf test. keywords: adf test lag length information criteria modified information criteria general to specific 一、引 言 随着时间序列非平稳问题的提出,单位根检验目前已经成为宏观数据建模前首先要进行的工作。为此,dickey和fuller(1979, 1981)1提出了著名的adf检验,并推导了当时间序列yt是arima(p,1,0)过程且满足检验式中滞后差分项长度k p时adf检验统计量的极限分布。然而,在实际运用adf检验时,真实的p是不知道的,因此需要研究者自己确定k。总的来说滞后长度的选择方法主要分为两类。一类是经验法(rule of thumb)。这种方法是研究者任意选择k,或将k表示为样本容量的函数。另外一类就是根据数据来选择k。这种方法主要有akaike(1973)信息准则(akaike information criteria,以下简写为aic)、schwarz(1978)信息准则(schwarz information criteria,以下简写为sic)、hannan和quinn(1979)信息准则(hannan and quinn information criteria,以下简写为hqic)、从一般到特殊法则(general to special criteria,以下简写为gsc)、从特殊到一般法则(special to general criteria,以下简写为sgc)等。此外,在后来的研究中,weber(1998)又提出了非自相关法则(no autocorrelation criteria),即从一个比较简化的模型开始,逐渐增加滞后差分项直到残差不能拒绝非自相关的原假设。2001年他又提出了一种考虑滞后长度k在特定区间kmin, kmax内的从特殊到一般法,该方法运用了一系列f检验,确定的最优滞后长度是使得比其大的直到kmax的所有滞后差分项对应参数的联合检验均不显著的最小的k。 然而很多学者都指出,adf检验的结论对滞后长度k的选择非常敏感。phillips和perron(1988)模拟发现当真实数据生成过程为随机游走时,随着检验式中差分项滞后长度的增加,会导致adf检验的功效和水平都降低。另外,schwert(1989)、agiakloglou和newbold(1992)以及harris(1992)等也指出不同的滞后长度选择方法对adf检验的实际水平和功效有明显影响。这就引发了关于不同方法确定滞后长度是否以及如何影响adf统计量极限分布的讨论。 其实早在adf检验提出不久,said和dickey(1984)就证明了对阶数未知的arma过程检验单位根时,只要检验式中的滞后长度k满足一定的上界条件和下界条件,仍可以用adf统计量来检验原过程中单位根的存在。紧接着,lewis和reinsel(1985)提出了一个与said和dickey(1984)下界条件等价的条件,并证明当满足该下界条件和said和dickey(1984)上界条件时检验式中滞后差分项的参数估计量具有一致性和渐近正态性。hannan和deistler(1988)2则提出了各信息准则确定一个平稳可逆的arma过程滞后长度的若干性质。 随后,ng和perron(1995)明确解答了哪些滞后长度选择方法满足这些上界与下界条件,以及运用它们确定滞后长度如何影响adf检验统计量极限分布的问题。首先,该文讨论了检验式中滞后长度k不满足said和dickey(1984)或lewis和reinsel(1985)下界条件对adf检验统计量极限分布的影响。他们认为这时仍渐近服从标准df分布,同时滞后差分项的参数估计量仍具有一致性,但其向真值收敛的速度要小于 (t为样本容量,下同)。接着,ng和perron(1995)将滞后长度的选择准则与上述极限分布条件相比较,证明了在adf检验中,利用各信息准则确定的滞后长度时不满足下界条件,但统计量仍服从标准df分布。而当运用gsc时,如果我们确定的滞后长度最大值满足上界条件和lewis和reinsel(1985)下界条件,则滞后差分项的参数估计量具有一致性和渐近正态性,可以用t统计量、f统计量和wald统计量检验其显著性。最后通过模拟重点讨论了当数据生成过程为arima(0,1,1)时各方法确定的滞后长度以及对adf检验功效和实际检验水平的影响。 类似地,hall(1994)还从一个纯自相关过程入手,给出了当真实数据生成过程是一个arima(p,1,0)过程时,adf统计量服从df分布应满足的假设条件。并讨论了不同滞后长度选择准则对adf统计量极限分布的影响。他认为当运用aic、sic、hqic以及gsc确定滞后长度时,满足上述条件,因此adf统计量仍服从标准df分布,而运用sgc时不能满足上述条件,从而adf统计量的极限分布发生变化,不再服从标准df分布。最后对于不同的arima(p,1,0)过程,模拟了基于各种准则的adf检验功效与实际检验水平。 此外,随着研究的不断深入,学者们又从一些新的角度对滞后长度选择的问题进行了探讨。比如ng和perron(2001)将elliott、rothenberg、和stock(1996)3以及dufour和king(1991)4提出的局部gls退势法与perron和ng(1996)5提出的修正的单位根检验统计量相结合,提出了一系列mgls统计量来检验单位根。在这种检验中,他们首度运用了一系列修正的信息准则(modified information criteria,以下简写为mic)来确定滞后长度,并给出了其局部渐近性质。mic与一般信息准则的本质区别就在于它考虑到检验式中一阶滞后项参数估计量的偏差与滞后长度是高度相关的,进而通过加入一个包含一阶滞后项参数估计量的修正项对信息准则拟和不足的问题进行了一定的校正。ng和perron(2005)又重点探讨了在运用各种信息准则时,可用观测值个数(即调整的样本容量)、计算均方误差时的自由度、以及计算惩罚因子(penalty factor)时使用的观测值个数对滞后长度选择的影响。结果表明在有限样本下aic与sic选择的滞后长度对上述三个因素非常敏感。 综上所述,已有的研究主要集中在对arima(p,1,0)和arima(0,1,1) 过程进行单位根检验时,各方法确定的滞后长度以及相应的单位根检验的功效与实际水平上。而对arima(0,1,q)即含有单位根的高阶移动平均过程的研究则比较少。另外,也鲜见mic与其他方法比较的相关研究。针对这些问题,本文对hall(1994),ng和perron(1995, 2001)的方法和结论进行扩展,在接下来的部分中用蒙特卡罗模拟的方法在有限样本下研究一个更一般的arima(0,1,q)过程,对模拟结果中不同滞后期选择方法尤其是mic的优劣进行比较,以期找到一种能应用在更一般的数据生成过程中,并使adf检验推断更真实可靠的滞后长度选择方法。最后一部分是对全文的总结,并提出了一些滞后项选择及adf检验中需要注意的问题。 二、模拟结果 根据hall(1994),ng和perron(1995, 2001)文章中的结论,运用信息准则和gsc确定滞后长度时,adf统计量仍服从标准df分布。其中运用gsc时滞后差分项以的速度收敛于真值,从而使adf检验有一个更优的有限样本性质。mic是对通常信息准则的修正。因此本文选取aic、sic、maic、msic以及gsc五种方法来确定adf检验式中的滞后长度。重点考察小样本下当误差项为高阶移动平均过程时基于各准则的adf检验功效和实际检验水平的特征,以及mic与其他方法相比对adf检验统计推断的影响和滞后长度选择的异同。各方法确定滞后长度的原理如下: 首先,aic与sic具有相似的形式,选择的滞后长度k满足使(1)式的值最小。其中aic准则中ct=2,sic准则中ct=logt,表示估计方程的误差均方,它往往随着滞后长度的增加而下降。是adf检验式中的解释变量个数,它等于滞后差分项个数k加上常数项以及时间趋势项,会随滞后长度的增加而变大,代表了对过度拟和的惩罚。因此选择k使(1)最小意味着在较少参数和较小的残差平方和之间做出选择。 (1) 另外,ng和perron(2001)提出了一系列的修正的信息准则即mic。其选择的滞后长度是使得目标方程(2)的值最小的k,依据ct的表达式不同mic又分别称为maic与msic。 (2) 它与一般的信息准则的不同就是增加了一个修正因子,其表达式为: (3) 其中是adf检验式中一阶滞后项的参数估计量。ng和perron(2001)证明会随着adf检验式中滞后差分项个数k的增加而减小,尤其当数据生成过程的移动平均部分含有负根时,这种减小更加明显,因此可以有效地校正一般信息准则拟和不足的问题。 gsc则是在adf检验式中选取r=j+m个滞后差分项,并通过对最后m个参数 (i=1, , m)的显著性进行联合检验来完成的,其中j0, jmax。该检验的wald形式为: (4) 其中 (5) (6) 它代表所有解释变量的方差协方差矩阵,是中右下方mm阶的块矩阵。 代表该检验式回归函数的误差均方,其中代表回归式的残差。 检验规则为:j从最大的取值jmax开始,依次降低其取值直到(4)式表示的统计量显著。该统计量服从自由度为m的2分布。基于显著性水平,滞后长度k的取值为 k = j +1,当是统计量所有值中第一个大于临界值的值时。 k = 0,当统计量所有值均小于临界值时。 为了考察误差项为高阶移动平均过程时adf检验中滞后长度的选择问题,我们对形如(7)式的数据生成过程共10种情况运用上述五种方法选择滞后长度继而进行adf检验。 (7) 其中l是滞后因子,ut是白噪声,y0=0。 10种数据生成过程如下:1=, 2=, 3=, 4=; 1=, 2=, 3=, 4=; 1=-, 2=, 3=, 4=; 1=-, 2=, 3=, 4=; 1=, 2=, 3=, 4=; 1=, 2=, 3=, 4=; 1=-, 2=, 3=, 4=; 1=-, 2=, 3=, 4=; 1=-, 2=-, 3=, 4=; 1=, 2=, 3=, 4=。这10种情况描述了误差项移动平均部分的根在个数、大小、正负等方面的不同情形。 adf检验的原假设h0: = 1;备择假设h1: 1时,检验结果是否随m的不同而改变?对不同的数据生成过程是否存在一个最佳的m使得检验功效和实际检验水平都最优?在实际操作中,如何确定一个先验的m?这些问题都值得进一步研究。另外,研究表明,滞后长度的上界与下界也直接影响最终滞后长度的选择,进而影响adf检验的统计推断,如何确定最优的上界与下界也是一个值得研究者继续探讨的问题。 参考文献 1 akaike, h., 1973, information theory and an extension of the maximum likelihood principle.c in 2nd international symposium on information theory, eds. b. n. petrov and f. csaki, budapest: akademiai kiado, pp. 267-281. 2 agiakloglou, c., and p. newbold, 1992, empirical evidence on dickey-fuller type tests.j journal of time series analysis, 13, 471-483. 3 hall, a., 1994, testing for a unit root in time series with pretest data based model selection.j journal of business & economic statistics, 12, 461-470. 4 harris, r. i. d., 1992, testing for unit roots using the augmented dickey-fuller test.j economic letters, 38, 381-386. 5 hannan, e. and b. quinn, 1979, the determination of the order of an autoregression.j journal of the royal statistical society, ser. b, 41, 190-195. 6 lewis, r., and g. c. reinsel, 1985, prediction of multivariate time series by autoregressive model fitting.j journal of multivariate analysis, 16, 393-411. 7 ng, s., and p., perron 1995, unit root tests in arma models with data-dependent methods for the selection of the truncation lag.j journal of the american statistical association, 90, 268-281. 8 ng, s., and p., perron 2001, lag length selection and the construction of unit roots tests with good size and power.j econometrica, 69, 1519-1554. 9 ng, s., and p., perron 2005, practitioners corner: a note on the selection of time series models.j oxford bulletin of economics and statistics, 67, 115-134. 10 phillips, p. c. b., and p. perron, 1988, testing for a unit root in time series regression.j biometrika, 75, 335-346. 11 weber, c. e., 1998, data-dependent criteria for lag length selection in augmented dickey-fuller regressions: a monte carlo analysis.j unpublished working paper, seattle university. 12 weber, c. e., 2001, f-tests for lag length selection in augmented dickey-fuller regressions: some monte carlo evidence.j applied economics letters, 2001, 8, 455-458. 13 said, s. e., and d. a., dickey 1984, testing for unit roots in autoregressive-moving average models of unknown order.j biometrika, 71, 599-607. 14 schwarz, g. w., 1978, estimation the dimension of a model.jthe annals of statistics, 6, 461-464. 15 schwert, g.w., 1989, tests for unit roots: a monte carlo investigation.j journal of business & economic statistics, 7, 147-160. 16 张晓峒、攸频:df检验式中漂移项和趋势项的t统计量研究j数量经济技术经济研究,2006年第2期。 17 聂巧平、张晓峒:adf单位根检验中联合检验f统计量研究j统计研究,2007年第2期。 18 张晓峒:计量经济分析m,南开大学出版社,2000。 1 参见dickey, d. a., and w. fuller, 1979, distribution of the estimators for autoregressive time series with a unit roots.j journal of the american statistical association, 74, 427-431.以及dickey, d. a., and w. fuller, 1981, likelihood ratio statistics for autoregressive
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美团员工试题题库及答案
- 职场常用的商务英语短语试题及答案
- 求各类英语试题及答案
- 黄平县面试真题及答案
- 2025体育教师考试试题及答案
- 2025汽车工程知识测试题库及答案
- 2025护士考试题库及答案
- 2025公务员行政能力测试题及答案
- 有机化学反应路径的探讨试题及答案
- 乡村旅游与休闲农业融合发展的乡村旅游与草原旅游结合报告
- 华大新高考联盟2025届高三4月教学质量测评化学+答案
- 2025年中国防晒护理洗发露市场调查研究报告
- 建筑材料租赁标准合同范本7篇
- 2025-2030中国太阳能照明系统行业市场发展趋势与前景展望战略研究报告
- 国家电网招聘考试(金融类)专业考试历年真题及答案
- 2025年湖北省汉江国有资本投资集团有限公司招聘笔试参考题库含答案解析
- 2025年高考政治三轮冲刺复习:统编版选择性必修3《逻辑与思维》开放类主观题 提分刷题练习题(含答案)
- 电镀车间厂房合同协议
- 铁路雨季三防培训课件
- 大学英语四级考试2024年12月真题(第一套)Part I Writing
- 全国行政区域身份证代码表(电子表格版)
评论
0/150
提交评论