冲刺985:高三数学立体几何讲义.doc_第1页
冲刺985:高三数学立体几何讲义.doc_第2页
冲刺985:高三数学立体几何讲义.doc_第3页
冲刺985:高三数学立体几何讲义.doc_第4页
冲刺985:高三数学立体几何讲义.doc_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冲刺985:高三数学立体几何讲义 1. 2017届山东烟台二中12月测试第14题 已知球的直径,在球面上, 则棱锥 的体积为 . 2. 2017届四川成都七中高三月考第11题 在棱长为2的正方体中,为底面正方形内一个动点,为棱上的一个动点,若,则的中点的轨迹所形成图形的面积是( ) A B C 3 D 3 2017届河北武邑中学高三上期中第11题 已知边长为的菱形中,现沿对角线折起,使得二面角为120,此时点在同一个球面上,则该球的表面积为( )A B C D4. 2017届海南海口一中高三10月月考第16题 已知三棱柱的侧棱垂直于底面,所有棱长都相等,若该三棱柱的顶点都在球的表面上,且三棱柱的体积为,则球的表面积为 . 5. 16.10月广东实验中学月考第7题 正方体ABCDA1B1C1D1中E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )A BC D6. 2017届河北唐山开滦第二中学高三上期中第15题 在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是 .7. 已知为三条不同直线,为三个不同平面,则下列判断正确的是( ) A . 若,则 B. 若,则 C. 若,则 D. 若,则8. 2016年全国II卷 是两个平面,是两条直线,有下列四个命题:(1)如果,那么.(2)如果,那么.(3)如果,那么.(4)如果,那么与所成的角和与所成的角相等.其中正确的命题有 .(填写所有正确命题的编号)9将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为34. 再将它们卷成两个圆锥侧面,则两圆锥体积之比为( )A34 B916 C2764 D都不对10. 2017河北衡水六调 已知三棱锥平面BOC,其中AB=10,BC=13,AC=5,O,A,B,C四点均在球的表面上,则球的表面积为 .11如图所示,四棱锥PABCD中,底面ABCD是矩形,PA平面ABCD,M、N分别是AB、PC的中点,PAAD (1)求证:MN平面PAD; (2)求证:平面PMC平面PCD12. 如图,三棱锥PABC中,PA底面ABC,PAAB,ABC60,BCA90,点D,E分别在棱PB,PC上,且DEBC()求证:BC平面PAC;()当D为PB的中点时,求AD与平面PAC所成角的余弦值;()试问在棱PC上是否存在点E,使得二面角ADEP为直二面角?若存在,求出PEEC的值;若不存在,说明理由13. 2016浙江十二校联考第17题 如图,在四棱锥中,底面为直角梯形,且平面平面()求证:;()在线段上是否存在一点M,使二面角的大小为,若存在,求的值;若不存在,请说明理由14.如图,在直三棱柱中,平面侧面,且.(1) 求证:;(2) 若,求锐二面角的大小.15.2016大连一模文18 如图(1),在等腰梯形中,分别为和的中点,且,为中点,现将梯形沿所在直线折起,使平面平面,如图(2)所示,是上一点,且.()求证:平面;()求三棱锥的体积. 15如图,四棱锥,都是边长为2的等边三角形.()证明: ()求点 立体几何高考题选讲(注意:小题文理通用,大题文理分做)1. 2016高考新课标1卷文 平面过正文体ABCDA1B1C1D1的顶点A,则m,n所成角的正弦值为( )(A) (B) (C) (D)1. 2016年天津卷理 如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF平面ABCD,点G为AB的中点,AB=BE=2.(I)求证:EG平面ADF;(II)求二面角O-EF-C的正弦值;(III)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【解析】()证明:找到中点,连结,矩形,、是中点,是的中位线且是正方形中心且四边形是平行四边形面面()正弦值解:如图所示建立空间直角坐标系,设面的法向量得:面,面的法向量()设得:2. 2016年全国卷 如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,且二面角DAFE与二面角CBEF都是(I)证明:平面ABEF平面EFDC;(II)求二面角EBCA的余弦值【解析】为正方形面面平面平面由知平面平面平面平面面面,四边形为等腰梯形以为原点,如图建立坐标系,设 ,设面法向量为.,即设面法向量为.即设二面角的大小为.二面角的余弦值为3. 2016年全国II卷 如图,菱形的对角线与交于点,点分别在上,交于点将沿折到位置,()证明:平面;()求二面角的正弦值【解析】证明:,四边形为菱形,;又,又,面建立如图坐标系,设面法向量,由得,取,同理可得面的法向量,8、(2016年全国III高考)如图,四棱锥中,地面,为线段上一点,为的中点(I)证明平面;(II)求直线与平面所成角的正弦值.设为平面的法向量,则,即,可取,于是.4. 2016年浙江卷 如图,在三棱台中,平面平面,BE=EF=FC=1,BC=2,AC=3.(I)求证:EF平面ACFD;(II)求二面角B-AD-F的平面角的余弦值.(II)方法一:过点作,连结因为平面,所以,则平面,所以所以,是二面角的平面角在中,得在中,得所以,二面角的平面角的余弦值为 4. 【2016高考新课标1文数】平面过正文体ABCDA1B1C1D1的顶点A,则m,n所成角的正弦值为( )(A) (B) (C) (D)【答案】A考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.6. 【2016高考上海文科】如图,在正方体ABCDA1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( ) (A)直线AA1 (B)直线A1B1 (C)直线A1D1 (D)直线B1C1【答案】D【解析】试题分析:只有与在同一平面内,是相交的,其他A,B,C中直线与都是异面直线,故选D考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.11.【2015高考山东,文9】已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A) (B) (C)2 (D)4 【答案】【解析】由题意知,该等腰直角三角形的斜边长为,斜边上的高为,所得旋转体为同底等高的全等圆锥,所以,其体积为,故选.【考点定位】1.旋转体的几何特征;2.几何体的体积.【名师点睛】本题考查了旋转体的几何特征及几何体的体积计算,解答本题的关键,是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.本题属于基础题,在考查旋转体的几何特征及几何体的体积计算方法的同时,考查了考生的空间想象能力及运算能力,是“无图考图”的一道好题.15. 2016高考新课标文数如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A) (B) (C)90 (D)81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积,故选B考点:空间几何体的三视图及表面积【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解16. 【2014全国2,文7】正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为( ) (A) (B) (C) (D)【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以【考点定位】棱柱、棱锥、棱台的体积【名师点睛】本题考查几何体的体积的求法,属于中档题,求解几何体的底面面积与高是解题的关键,对于三棱锥的体积还可利用换底法与补形法进行处理25. 2016高考新课标文数在封闭的直三棱柱内有一个体积为的球,若,则的最大值是( )(A)4 (B) (C)6 (D) 【答案】B【解析】试题分析:要使球的体积最大,必须球的半径最大由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B考点:1、三棱柱的内切球;2、球的体积【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解41. 【2015新课标2文10】已知是球的球面上两点,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )A. B. C. D. 【答案】C【解析】试题分析:设球的半径为R,则AOB面积为,三棱锥 体积最大时,C到平面AOB距离最大且为R,此时 ,所以球O的表面积.故选C.【考点定位】本题主要考查球与几何体的切接问题及空间想象能力.【名师点睛】由于三棱锥底面AOB面积为定值,故高最大时体积最大,本题就是利用此结论求球的半径,然后再求出球的表面积,由于球与几何体的切接问题能很好的考查空间想象能力,使得这类问题一直是高考中的热点及难点,提醒考生要加强此方面的训练.4. 【2016高考浙江文数】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,ADC=90沿直线AC将ACD翻折成,直线AC与所成角的余弦的最大值是_【答案】【解析】试题分析:设直线与所成角为设是中点,由已知得,如图,以为轴,为轴,过与平面垂直的直线为轴,建立空间直角坐标系,由,作于,翻折过程中,始终与垂直, ,则,因此可设,则,与平行的单位向量为,所以,所以时,取最大值考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与平行的单位向量和,进而可得直线与所成角的余弦值,最后利用三角函数的性质可得直线与所成角的余弦值的最大值6.【2015高考四川,文14】在三棱住ABCA1B1C1中,BAC90,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是_.PC1【答案】B1A1【解析】由题意,三棱柱是底面为直角边长为1的NC等腰直角三角形,高为1的直三棱柱,底面积为MBA如图,因为AA1PN,故AA1面PMN,故三棱锥PA1MN与三棱锥PAMN体积相等,三棱锥PAMN的底面积是三棱锥底面积的,高为1故三棱锥PA1MN的体积为【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力.【名师点睛】解决本题,首先要正确画出三棱柱的直观图,包括各个点的对应字母所在位置,结合条件,三棱锥PA1MN的体积可以直接计算,但转换为三棱锥PAMN的体积,使得计算更为简便,基本上可以根据条件直接得出结论.属于中档偏难题.三、解答题1【2016高考新课标1文数】(本题满分12分)如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点E,连接PE并延长交AB于点G.(I)证明G是AB的中点;(II)在答题卡第(18)题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积【答案】(I)见解析(II)作图见解析,体积为【解析】试题分析:先证明由可得是的中点. (II)在平面内,过点作的平行线交于点,即为在平面内的正投影.要求四面体的体积可先证明平面,把看作高,求出高及底面积,即可确定体积.试题解析:(I)因为在平面内的正投影为,所以因为在平面内的正投影为,所以所以平面,故又由已知可得,从而是的中点. (II)在平面内,过点作的平行线交于点,即为在平面内的正投影.理由如下:由已知可得,又,所以,因此平面,即点为在平面内的正投影.连接,因为在平面内的正投影为,所以是正三角形的中心.由(I)知,是的中点,所以在上,故由题设可得平面,平面,所以,因此由已知,正三棱锥的侧面是直角三角形且,可得 在等腰直角三角形中,可得所以四面体的体积考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.5. 2016高考新课标文数如图,四棱锥中,平面,为线段上一点,为的中点(I)证明平面;(II)求四面体的体积.【答案】()见解析;()【解析】试题分析:()取的中点,然后结合条件中的数据证明四边形为平行四边形,从而得到,由此结合线面平行的判断定理可证;()由条件可知四面体的高,即点到底面的距离为棱的一半,由此可顺利求得结果试题解析:()由已知得,取的中点,连接,由为中点知,. .3分又,故,四边形为平行四边形,于是.因为平面,平面,所以平面. .6分()因为平面,为的中点,所以到平面的距离为. .9分取的中点,连结.由得,.由得到的距离为,故,所以四面体的体积. .12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解9.【2015高考湖南,文18】(本小题满分12分)如图4,直三棱柱的底面是边长为2的正三角形,分别是的中点。(I)证明:平面平面;(II)若直线与平面所成的角为,求三棱锥的体积。【答案】(I)略;(II) .【解析】(II)设的中点为,连接,因为是正三角形,所以,又三棱柱是直三棱柱,所以,因此平面,于是直线与平面所成的角,由题设知,所以,在中,所以故三棱锥的体积。【考点定位】柱体、椎体、台体的体积;面面垂直的判定与性质【名师点睛】证明面面垂直的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础由于“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在求锥的体积关键在于确定其高,即确定线面垂直.11. 【2016高考山东文数】(本小题满分12分)在如图所示的几何体中,D是AC的中点,EFDB.(I)已知AB=BC,AE=EC.求证:ACFB;(II)已知G,H分别是EC和FB的中点.求证:GH平面ABC.【答案】()证明:见解析;()见解析.【解析】()设的中点为,连,在中,是的中点,所以,又,所以;在中,是的中点,所以,又,所以平面平面,因为平面,所以平面.考点:1.平行关系;2.垂直关系.【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.本题能较好的考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.12. 【2015高考山东,文18】 如图,三棱台中,分别为的中点.(I)求证:平面;(II)若求证:平面平面. 【答案】证明见解析【解析】(I)证法一:连接设,连接,在三棱台中,分别为的中点,可得,所以四边形是平行四边形,则为的中点,又是的中点,所以,又平面,平面,所以平面.来源:学.科.网Z.X.X.K证法二:在三棱台中,由为的中点,可得所以为平行四边形,可得在中,分别为的中点,所以又,所以平面平面,因为平面,所以平面.(II)证明:连接.因为分别为的中点,所以由得,又为的中点,所以因此四边形是平行四边形,所以又,所以.又平面,所以平面,又平面,所以平面平面【考点定位】1.平行关系;2.垂直关系.【名师点睛】本题考查了空间几何体的特征及空间直线与直线、直线与平面、平面与平面的平行关系和垂直关系,从证明方法看,起点低,入口宽,特别是第一小题.证明过程中,关键是注意构造线线的平行关系、垂直关系,特别是注意利用平行四边形,发现线线关系,进一步得到线面关系、面面关系.本题是一道能力题,属于中等题,重点考查两空间几何体的特征及空间直线、平面的平行关系和垂直关系等基础知识,同时考查考生的逻辑推理能力、空间想象能力思维的严密性、函数方程思想及应用数学知识解决问题的能力.16. 【2014全国2,文18】(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.()证明:/平面;()设,三棱锥的体积,求到平面的距离.【答案】()详见解析;()【考点定位】1.直线与平面平行;2.点到平面的距离.【名师点睛】本题考查了直线与平面平行的判断与证明,等体积的求法求距离,属于中等题,考查学生分析解决问题的能力,要证线面平行,由判定定理可知,只需在面内作一直线与已知直线平行即可,如何作出这条面内线就是平时的经验积累与分析思维的能力了,求点到平面的距离,可用等体积法25. 【2014年.浙江卷.文20】(本小题满分15分)如图,在四棱锥中,平面平面;,.(1)证明:平面;(2)求直线与平面所成的角的正切值.【答案】(1)详见解析;(2).试题解析:(1)连结,在直角梯形中,由,得,由得,即,又平面平面,从而平面.(2)在直角梯形中,由,得,又平面平面,所以平面.作于的延长线交于,连结,则平面,所以是直线与平面所成的角.在中,由,得,在中,得,在中,由,得,所以直线与平面所成的角的正切值是.考点:空间点、线、面的位置关系,线面所成的角.【名师点睛】传统方法证明直线和平面垂直的常用方法:(1)利用判定定理;(2)利用判定定理的推论(ab,ab);(3)利用面面平行的性质(a,a);(4)利用面面垂直的性质当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面有关线面是成角问题主要通过线在面内的射影,三垂线定理构造直角三角形求解.28.【2014,安徽文19】(本题满分13分)如图,四棱锥的底面边长为8的正方形,四条侧棱长均为.点分别是棱上共面的四点,平面平面,平面.(I)证明:(II)若,求四边形的面积.【答案】(I);(II).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论