高二数学分类加法与分步乘法计数原理.ppt_第1页
高二数学分类加法与分步乘法计数原理.ppt_第2页
高二数学分类加法与分步乘法计数原理.ppt_第3页
高二数学分类加法与分步乘法计数原理.ppt_第4页
高二数学分类加法与分步乘法计数原理.ppt_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章计数原理,1.1分类加法计数原理与分步乘法计数原理,高中新课程数学选修2-3,1.将1元人民币兑换成角票,共有多少种不同的兑换方法?,10种,提出问题,2.有一个职业赌彩师曾请教伽利略,他认为同时抛掷3枚骰子,在点数之和为9或10上押赌的可能性是一样的,但据长期观察,在点数之和为10上押赌的赢面要大些,这是为什么?,分类加法计数原理与分步乘法计数原理,1.用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?,261036,问题探究,2.从甲地到乙地可以乘火车,也可以乘汽车,一天中火车有4班,汽车有8班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?,4812,问题探究,3.从师大声乐系某6名男生或8名女生中任选一人表演独唱,共有多少种不同的选派方法?,6814,问题探究,4.上述计数问题的算法有何共同特点?,完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有Nmn种不同的方法.,形成结论,上述原理称为分类加法计数原理.,如何从集合运算的角度理解这个原理?,若ABU,AB,则card(U)card(A)card(B).,问题探究,如果完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第n类方案中有mn种不同的方法,那么完成这件事的方法总数为:,Nm1m2mn,形成结论,1.用AF六个大写的英文字母和19九个阿拉伯数字,以A1,A2,B1,B2,的方式给教室里的座位编号,总共能够编出多少种不同的号码?,6954,问题探究,2.从甲地到乙地,先要从甲地乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中从甲地到丙地的火车有4班,从丙地到乙地的汽车有8班,那么两天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?,4832,问题探究,3.从师大声乐系某6名男生和8名女生中各选一人表演男女二重唱,共有多少种不同的选派方法?,6848,问题探究,上述原理称为分步乘法计数原理.,4.上述计数问题的算法有何共同特点?,完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有Nmn种不同的方法.,问题探究,如何从集合运算的角度理解这个原理?,若U(a,b)|aA,bB,则card(U)card(A)card(B).,如果完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事的方法总数如何计算?,Nm1m2mn,形成结论,例1在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学:生物学化学医学物理学工程学B大学:数学会计学信息技术学法学如果这名同学只能选一个专业,求他共有多少种不同的选择方法?,549(种),典例讲评,例2某班有男生30名,女生24名,现要从中选出男、女生各一名代表班级参加朗诵比赛,求共有多少种不同的选派方法?,3024720(种),典例讲评,例3书架有三层,其中第一层放有4本不同的计算机书,第二层放有3本不同的文艺书,第三层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第一,二,三层各取1本书,有多少种不同的取法?,(1)4329(种),(2)43224(种),例4要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,求共有多少种不同的挂法?,326(种),典例讲评,1.分类加法计数原理和分步乘法计数原理,都是解决完成一件事的方法数的计数问题,其不同之处在于,前者是针对“分类”问题的计数方法,后者是针对“分步”问题的计数方法.,2.在“分类”问题中,各类方案中的每一种方法相互独立,选取任何一种方法都能完成这件事;在“分步”问题中,各步骤中的方法相互依存,只有各步骤各选一种方法才能完成这件事.,课堂小结,3.在应用分类加法计数原理时,分类方法不惟一,但分类不能重复,也不能遗漏.在应用分步乘法计数原理时,分步方法不惟一,但分步不能重叠,也不能缺少.,课堂小结,作业:P12习题1.1A组:1,2,3,4,5.,布置作业,分类加法计数原理与分步乘法计数原理的应用(习题课),1.分类加法计数原理:,完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有Nmn种不同的方法.,复习巩固,推广:如果完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第n类方案中有mn种不同的方法,那么完成这件事的方法总数为Nm1m2mn,复习巩固,2.分步乘法计数原理:,完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有Nmn种不同的方法.,推广:如果完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事的方法总数为Nm1m2mn,例1给程序模块命名,需要用3个字符,其中首字符要求用字母AG或UZ,后两个要求用数字19,问最多可以给多少个程序命名?,最多可以给1053个程序命名,典例讲评,例2核糖核酸(RNA)分子是在生物细胞中发现的化学成分,一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有4种不同的碱基,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子由100个碱基组成,那么能有多少个不同的RNA分子?,4100个,例3电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国际码(GB码)包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?,256个,2个,例4计算机编程人员在编写好程序以后需要对程序进行测试,程序员需要知道到底有多少条执行路径(即程序从开始到结束的路线),以便知道需要提供多少个测试数据.一般地,一个程序模块由许多子模块组成.如图所示是一个具有许多执行路径的程序模块.(1)这个程序模块有多少条执行路径;(2)为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方法,以减少测试次数吗?,7371条,178次,例5随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照组成方法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?,共能给22464000辆汽车上牌照.,集合Aa1,a2,an共有多少个子集?,思考,1.一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字号码?,N1010101010000(种),课堂练习,2.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?,第一步:选1人上日班;,第二步:选1人上晚班.,有3种方法,有2种方法,N326(种),3.由数字0,1,2,3,4,5可以组成多少个无重复数字的三位数?,5种,4种,5种,N554100(种),4.从5人中选4人参加数、理、化学科竞赛,其中数学2人,理、化各1人,求共有多少种不同的选法?,5种,4种,3种,N54360(种),N5433180(种),5,4,3,3,6.从3,2,1,0,1,2,3中任取三个不同的数作为抛物线y=ax2+bx+c(a0)的系数,如果抛物线过原点,且顶点在第一象限,问这样的抛物线共有多少条?,c取值a取值b取值,N3319(种),c0a0b0,7.某4名田径运动员报名参加100m,200m和400m三项短跑比赛.(1)每人限报1个项目,共有多少种不同的报名方法?(2)每个项目限报1人,共有多少种不同的报名方法?,(1)3481种;,(2)4364种.,8.630的正约数(包括1和630)共有多少个?,6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论