




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十八章平行四边形,导入新课,讲授新课,当堂练习,课堂小结,学练优八年级数学下(RJ)教学课件,18.2.3正方形,第2课时正方形的判定,1探索并证明正方形的判定,并了解平行四边形、矩形、菱形之间的联系和区别;(重点、难点)2会运用正方形的判定条件进行有关的论证和计算.(难点),问题1什么是正方形?正方形有哪些性质?,A,B,C,D,正方形:有一组邻边相等,并且有一个角是直角的平行四边形.正方形性质:四个角都是直角;四条边都相等;对角线相等且互相垂直平分.,O,导入新课,复习引入,问题2你是如何判断是矩形、菱形?,平行四边形,矩形,菱形,四边形,三个角是直角,四条边相等,定义,四个判定定理,定义,对角线相等,定义,对角线垂直,思考怎样判定一个四边形是正方形呢?,讲授新课,活动1准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证验证.,正方形,猜想满足怎样条件的矩形是正方形?,矩形,正方形,一组邻边相等,对角线互相垂直,已知:如图,在矩形ABCD中,AC,DB是它的两条对角线,ACDB.求证:四边形ABCD是正方形.证明:四边形ABCD是矩形,AO=CO=BO=DO,ADC=90.ACDB,AD=AB=BC=CD,四边形ABCD是正方形.,证一证,A,B,C,D,O,对角线互相垂直的矩形是正方形.,活动2把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.量量看是不是正方形.,正方形,菱形,猜想满足怎样条件的菱形是正方形?,正方形,一个角是直角,对角线相等,已知:如图,在菱形ABCD中,AC,DB是它的两条对角线,AC=DB.求证:四边形ABCD是正方形.证明:四边形ABCD是菱形,AB=BC=CD=AD,ACDB.AC=DB,AO=BO=CO=DO,AOD,AOB,COD,BOC是等腰直角三角形,DAB=ABC=BCD=ADC=90,四边形ABCD是正方形.,证一证,A,B,C,D,O,对角线相等的菱形是正方形.,正方形判定的几条途径:,正方形,正方形,+,+,先判定菱形,先判定矩形,矩形条件(二选一),菱形条件(二选一),一个直角,,一组邻边相等,,总结归纳,对角线相等,对角线垂直,在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是(),AAC=BD,ABCD,AB=CDBADBC,A=CCAO=BO=CO=DO,ACBDDAO=CO,BO=DO,AB=BC,练一练,C,A,B,C,D,O,例1在正方形ABCD中,点E、F、M、N分别在各边上,且AE=BF=CM=DN四边形EFMN是正方形吗?为什么?,证明:四边形ABCD是正方形,AB=BC=CD=DA,A=B=C=D=90.AE=BF=CM=DN,AN=BE=CF=DM.,分析:由已知可证AENBFECMFDNM,得四边形EFMN是菱形,再证有一个角是直角即可.,典例精析,在AEN、BFE、CMF、DNM中,AE=BF=CM=DN,A=B=C=D,AN=BE=CF=DM,AENBFECMFDNM,EN=FE=MF=NM,ANE=BEF,四边形EFMN是菱形,NEF=180(AEN+BEF)=180(AEN+ANE)=18090=90.四边形EFMN是正方形.,证明:DEAC,DFAB,DEC=DFC=90.又C=90,四边形ADFC是矩形.过点D作DGAB,垂足为G.AD是CAB的平分线DEAC,DGAB,DE=DG.同理得DG=DF,ED=DF,四边形ADFC是正方形.,例2如图,在直角三角形中,C=90,A、B的平分线交于点D.DEAC,DFAB.求证:四边形CEDF为正方形.,A,B,C,D,E,F,G,例3如图,EG,FH过正方形ABCD的对角线的交点O,且EGFH.求证:四边形EFGH是正方形.证明:四边形ABCD为正方形,OB=OC,ABO=BCO=45,BOC=90=COH+BOH.EGFH,BOE+BOH=90,COH=BOE,CHOBEO,OE=OH.同理可证:OE=OF=OG,OE=OF=OG=OH.又EGFH,四边形EFGH为菱形.EO+GO=FO+HO,即EG=HF,四边形EFGH为正方形.,例4如图,正方形ABCD,动点E在AC上,AFAC,垂足为A,AF=AE(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由,(1)证明:正方形ABCD,AB=AD,BAD=90,AFAC,EAF=90,BAF=EAD,在ADE和ABF中,ADAB,DAEBAF,AEAF,ADEABF(SAS),BF=DE;,(2)解:当点E运动到AC的中点时四边形AFBE是正方形,理由:点E运动到AC的中点,AB=BC,BEAC,BE=AE=AC,AF=AE,BE=AF=AE.又BEAC,FAE=BEC=90,BEAF,BE=AF,得平行四边形AFBE,FAE=90,AF=AE,四边形AFBE是正方形,思考前面学菱形时我们探究了顺次连接任意四边形各边中点所得的四边形是平行四边形.顺次连接矩形各边中点能得到菱形,那么顺次连接正方形各边中点能得到怎样的特殊平行四边形?,矩形,正方形,任意四边形,平行四边形,菱形,正方形,E,F,G,H,E,F,G,H,E,F,G,H,当堂练习,1.下列命题正确的是()A.四个角都相等的四边形是正方形B.四条边都相等的四边形是正方形C.对角线相等的平行四边形是正方形D.对角线互相垂直的矩形是正方形,D,2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A当AB=BC时,四边形ABCD是菱形B当ACBD时,四边形ABCD是菱形C当ABC=90时,四边形ABCD是矩形D当AC=BD时,四边形ABCD是正方形,D,3.如图,四边形ABCD中,ABC=BCD=CDA=90,请添加一个条件_,可得出该四边形是正方形,AB=BC(答案不唯一),A,B,C,D,O,4.已知四边形ABCD是平行四边形,再从AB=BC,ABC=90,AC=BD,ACBD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,其中错误的是_(只填写序号),或,5.如图,在四边形ABCD中,AB=BC,对角线BD平分ABC,P是BD上一点,过点P作PMAD,PNCD,垂足分别为M、N.(1)求证:ADB=CDB;(2)若ADC=90,求证:四边形MPND是正方形.,证明:(1)AB=BC,BD平分ABC.1=2.ABDCBD(SAS).ADB=CDB.,1,2,(2)ADC=90;又PMAD,PNCD;PMD=PND=90.四边形NPMD是矩形.ADB=CDB;ADB=CDB=45.MPD=NPD=45.DM=PM,DN=PN.四边形NPMD是正方形.,6.如图,ABC中,D是BC上任意一点,DEAC,DFAB(1)试说明四边形AEDF的形状,并说明理由(2)连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?,解:(1)DEAC,DFAB,四边形AEDF为平行四边形.(2)四边形AEDF为菱形,AD平分BAC,则AD平分BAC时,四边形AEDF为菱形.,(3)在(2)的条件下,当ABC满足什么条件时,四边形AEDF为正方形,不说明理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 24631-3:2025 EN Radiofrequency identification of animals - Part 3: Evaluation of performance of RFID transponders conforming with ISO 11784 and ISO 11785
- 【正版授权】 ISO 11237:2025 EN Rubber hoses and hose assemblies - Compact wire-braid-reinforced hydraulic types for oil-based or water-based fluids - Specification
- 【正版授权】 IEC 61300-2-5:2022/AMD1:2025 EN-FR Amendment 1 - Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 2-5: Tests - Torsi
- 【正版授权】 IEC 60300-3-10:2025 EN-FR Dependability management - Part 3-10: Application guide - Maintainability and maintenance
- 北汽越野安全知识培训课件
- 校园火灾逃亡安全知识培训课件
- 校园消防知识培训课件标语
- 校园消防安全知识培训课件
- 安全饮水面试题及答案
- 更换轴承考试试题及答案
- 2025年教育综合理论知识试题及答案
- 普速《铁路技术管理规程》普速铁路部分
- 双减新政下 如何优化小学数学的作业设计专题讲座ppt
- 绿色建筑施工专项方案
- 法兰与垫片的基础知识
- 急性呼吸窘迫综合征护理
- GA 576-2018防尾随联动互锁安全门通用技术条件
- 渠道维护工试题
- 管道安装组对检查记录
- 初中生简历模板
- 哈尔滨市城市规划管理技术规定
评论
0/150
提交评论