北京各区2019届高三二模理科数学分类汇编-解析-含答案.doc_第1页
北京各区2019届高三二模理科数学分类汇编-解析-含答案.doc_第2页
北京各区2019届高三二模理科数学分类汇编-解析-含答案.doc_第3页
北京各区2019届高三二模理科数学分类汇编-解析-含答案.doc_第4页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

百度文库,精选习题北京各区二模理科数学分类汇编解析(2015届西城二模)10双曲线C :的离心率为;渐近线的方程为答案:(2015届西城二模)19(本小题满分14 分)设F1、F2分别为椭圆E:的左、右焦点,点A 为椭圆E 的左顶点,点B 为椭圆E 的上顶点,且AB2 若椭圆E 的离心率为,求椭圆E 的方程; 设P 为椭圆E 上一点,且在第一象限内,直线与y 轴相交于点Q ,若以PQ 为直径的圆经过点F1,证明:|OP|则19(本小题满分14分)()解:设,由题意,得,且, 2分解得,. 4分所以椭圆的方程为. 5分()解:由题意,得,所以椭圆的方程为, 则,. 设, 由题意,知,则直线的斜率, 6分 直线的斜率, 所以直线的方程为, 当时,即点, 所以直线的斜率为, 8分 因为以为直径的圆经过点, 所以. 所以, 10分 化简,得, 又因为为椭圆上一点,且在第一象限内, 所以, 由,解得, 12分 所以, 13分因为,所以, 所以. 14分(2015届海淀二模)答案:(2015届海淀二模)(19)(共14分)解:()依题意得解得:,. 3分 所以圆的方程为,椭圆的方程为. 5分()解法一:如图所示,设(), ,则即 7分又由得. 由得. 10分 所以 ,. 所以 .所以 ,即. 14分()解法二:如图所示,设,().由得.所以 ,即.所以 ,即. 所以 直线的斜率为.所以 .令得:,. 10分设,则,.所以 .因为 ,所以 .所以 ,即. 14分 (2015届东城二模)(12)若双曲线截抛物线的准线所得线段长为,则 答案:(2015届东城二模) (19)(本小题共13分)已知椭圆的中心在原点,焦点在轴上,离心率为,且椭圆上的点到两个焦点的距离之和为()求椭圆的方程; ()设为椭圆的左顶点,过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点证明: (19)(共13分)解:()设椭圆的标准方程为,由题意知解得,所以椭圆的标准方程为5分()设直线的方程为:,则 由 得(*)设,则,是方程(*)的两个根,所以所以 设直线的方程为:由 得设,则,所以,所以 13分(2015届丰台二模)19.(本小题共14分) 已知椭圆:的焦距为,其两个焦点与短轴的一个顶点是正三角形的三个顶点()求椭圆C的标准方程;()动点P在椭圆上,直线:与x轴交于点N,于点(,不重合),试问在x轴上是否存在定点,使得的平分线过中点,如果存在,求定点的坐标;如果不存在,说明理由(2015届昌平二模) 19.(本小题满分14分)已知椭圆:,右焦点,点在椭圆上.(I)求椭圆的标准方程;(II) 已知直线与椭圆交于两点,为椭圆上异于的动点.(i)若直线的斜率都存在,证明:;(ii) 若,直线分别与直线相交于点,直线与椭圆相交于点(异于点), 求证:,三点共线.解:()依题意,椭圆的焦点为,则, 解得,所以. 故椭圆的标准方程为. 5分 ()(i)证明:设,则两式作差得.因为直线的斜率都存在,所以.所以 ,即.所以,当的斜率都存在时, . 9分(ii) 证明:时, .设的斜率为,则的斜率为,直线,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论