初一上册数学教案.docx_第1页
初一上册数学教案.docx_第2页
初一上册数学教案.docx_第3页
初一上册数学教案.docx_第4页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初一上册数学教案【篇一:2013-2014人教版七年级数学上册教案】 义务教育课程标准人教版 数学教案 七年级 上册 20132014学年度 - 1 -第一章 有理数 单元教学内容 1本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系 引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念 2通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用: (1)数轴能反映出数形之间的对应关系 (2)数轴能反映数的性质w-w-w.x-k-b-1.c.-o-m (3)数轴能解释数的某些概念,如相反数、绝对值、近似数 (4)数轴可使有理数大小的比较形象化 3对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分 4正确理解绝对值的概念是难点 根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质: (1)任何有理数都有唯一的绝对值 (2)有理数的绝对值是一个非负数,即最小的绝对值是零 (3)两个互为相反数的绝对值相等,即a=-a (4)任何有理数都不大于它的绝对值,即aa,a-a (5)若a=b,则a=b,或a=-b或a=b=0 三维目标 - 2 -1知识与技能 (1)了解正数、负数的实际意义,会判断一个数是正数还是负数 (2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解 (3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值 (4)会利用数轴和绝对值比较有理数的大小 2过程与方法 经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法 3情感态度与价值观 使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言 重、难点与关键 1重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值 2难点:准确理解负数、绝对值等概念 3关键:正确理解负数的意义和绝对值的意义 课时划分 11 正数和负数 2课时 12 有理数 5课时 13 有理数的加减法4课时 14 有理数的乘除法5课时 15 有理数的乘方 4课时 第一章有理数(复习) 2课时 - 3 -11正数和负数 第一课时 三维目标 一知识与技能 能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量 二过程与方法 借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性 三情感态度与价值观 培养学生积极思考,合作交流的意识和能力 教学重、难点与关键 1重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法 2难点:正确理解负数的概念 3关键:创设情境,充分利用学生身边熟悉的事物,?加深对负数意义的理解 教具准备 投影仪 教学过程 四、课堂引入 我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数 在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2?页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7% - 4 -五、讲授新课 (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“”的数)叫做负数而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前面也加上“”(正)号,例如,+3,+2,+0.5,11+,?就是3,2,0.5,?一个数前面的“”、“”号叫做它的符号,这33 种符号叫做性质符号 (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数 (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数 (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0,是指一个确定的温度;海拔0表示海平面的平均高度 用正负数表示具有相反意义的量 (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量?正数和负数在许多方面被广泛地应用在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m记录账目时,通常用正数表示收入款额,负数表示支出款额 (6)、 请学生解释课本中图11-2,图11-3中的正数和负数的含义 (7)、 你能再举一些用正负数表示数量的实际例子吗? (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量 六、巩固练习 课本第3页,练习1、2、3、4题 七、课堂小结 为了表示现实生活中的具有相反意义的量,我们引进了负数正数就是我们 - 5 -【篇二:新人教版七年级上册数学第一章有理数全章教案】 第一章 “有理数”教材分析 本章是第三学段教科书的第一章,既承接前两个学段的内容,又为进一步学习打下基础。本章主要内容是有理数的有关概念及其运算。首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减法运算。 引入负数是实际的需要,也是学习第三学段数学内容,特别是数与代数内容的需要。 引进数轴可以把有理数用数轴上的一个点直观地表示出来,从而可以直观地介绍相反数、绝对值,同时为用数轴引进有理数的加法法则与乘法法则作准备。 引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。 引入绝对值的的概念,可以加深对有理数的认识:一个有理数由符号与绝对值确定。两个负数比较大小,有理数运算也要借助绝对值这个概念。 本章的重点是有理数的运算。加法与乘法都是在介绍运算法则着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算。 减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算。 乘方是几个相同因数的乘积,也就可以利用乘法运算。科学记数法与乘方有关,因而可进一步加以介绍。近似数在实际问题中有广泛的应用,有必要在本章作进一步的认识。近似数的内容与乘方也有一定的联系,例如,大数的近似数用科学记数法表示,可以清楚地看出保留的有效数字的个数。 为了加强与相关运算的联系,利用计算器计算分散安排在相关内容中。例如,教科书用计算器计算一些负数的乘方,进而探求负数的乘方的符号规律。学会了使用计算器进行有理数运算,较复杂的计算就可以用计算器完成。简单的有理数运算仍需要学生熟练地用笔算完成。 本章的教学要求如下: 1通过实际例子,感受引入负数的必要性。会用正负数表示实际问题中的数量。 2理解有理数的意义,能用数轴上的点表示有理数。借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小。通过上述内容的学习,体会从数与形两方面考虑问题的方法。 3掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算。能运用有理数的运算解决简单的问题。 理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主)。 通过实例进一步感受大数,并能用科学记数法表示。了解近似数与有效数字的概念。 1加强与实际的联系 (1)从实际出发引入有关内容 章前引言注意与实际的联系,用温度、净胜球、零件生产、纳米的实例引入本章的内容。通过第一节开头回顾学过的数的产生和发展的过程,说明数的产生和发展离不开生活和生产的需要。 有理数的有关概念注意从实际引入。例如,数轴是通过描述位置的问题引出的,并让学生通过温度计加深对数轴的认识。又如,通过一个“观察”,栏目,给出未来一周天气预报,提出问题“你能将图中给出的各个温度按从低到高的顺序排列吗?”,从而引出有理数比较大小的内容。 从实际出发引入有理数的运算。例如,通过足球比赛中,计算章前引言中红队和白队的净胜净胜球数,出现 4(2),1+(1), 引出正数与负数的加法又如,通过某地一天的气温是34,这天的温差()就是4(3),引出正数与负数的减法 (2)运用有关内容解决实际问题 教科书通过引言中温度、净胜球、加工允许误差的实例引出负数后,进一步介绍正负数在实际中的应用。例如,在地形图上表示某地的高度要用到正负数。又如,银行储蓄中存入用正数表示,支出用负数表示。再如,用正负数描述体重、出口总额的增减变化。通过这些例子,让学生进一步体会引入负数在解决实际问题中的作用。 学过有理数的有关运算后,即可运用相应运算解决实际问题。例如,运用有理数加法解决有关求和的实际问题,运用有理数的乘法解决气温变化的问题,运用有理数的混合运算解决公司盈亏问题。 让学生通过“数学活动”将本章内容运用于实际。例如,让学生运用本章有关内容掌握家庭的生活收支情况。又如,让学生运用本章有关内容描述一周的气温情况。再如,让学生收集实例,体会科学记数法和近似数等在实际中的应用。 2运用数形结合的方法 从数轴上看,有许多对关于原点对称的点,从而引出相反数加以描述。除了关于原点对称的点以外,数轴上不同的点到原点的距离不同,这又可以引入绝对值加以描述。利用数轴规定有理数的顺序,既直观又涵盖了有理数比较大小的各种情况。 利用数轴分析物体运动的实例,可以非常直观地获得物体两次运动的结果,从而引出有理数加法的运算法则。 3让学生通过观察、思考、探究、讨论、归纳,主动地进行学习 让学生从身边事物的观察入手,可以加深学生对所学内容的印象。例如,观察温度计可以使学生获得数轴的直观感受。又如,让学生观察一周天气预报,使他们感受到比较温度高低的必要,从而引出有理数比较大小的内容。再如,让学生观察运算结果的符号,使他们掌握有理数运算的符号规律。 勤于思考,善于思考,是学好数学的必要条件。教科书中穿插安排了大量的思考栏目。例如,让学生思考有理数的分类方法。又如,让学生思考加法运算律在有理数范围是否成立。再如,让学生思考运算律简化计算的作用。有的通过对问题的思考获得结论,有的通过对解决问题的过程的反思加深认识。要让学生积极动脑,积极参与,激发他们学习的热情。 探究是解决问题,探求结论的过程,要让学生知其然,更知其所以然。例如,在本章中,让学生通过数轴探求物体两次运动的结果,从而认识有理数的加法运算法则,以及探究有理数乘法法则。在这些问题中,学生自己探索发现,体验获得结论的过程。 讨论是合作交流,从而互相启发,互相促进的一种方式。积极交流表达思想可以促进数学思考,扩大和加深对问题的认识。例如,通过对有理数减法与有理数加法的关系的讨论,让学生结合具体例子寻找结论,在这个过程中共同探索,共同发现,共同交流,共同分享成功的喜悦。成功的讨论可以使学生感受集体的力量。 在观察、思考、讨论的基础上归纳结论是学习过程中的一个重要环节。结论是探索的结果,又要进一步运用于解决问题中。如归纳正负数的相反意义,加减运算的统一。要通过归纳让学生体会从特殊到一般,从具体到抽象的过程,使他们既学会发现,又学会总结。 三、几个值得关注的问题 1与前两个学段的衔接 前两个学段学过整数、分数(包括小数)的知识,即正有理数及0的知识,还学过用字母表示数的知识,这些都是学习本章内容的基础。 有理数的有关概念以及运算,与前两个学段学过的数的概念及运算联系紧密。例如,对负数的认识离不开对已学过的数的认识;有理数的运算,当符号确定后,就归结到已学过的运算上去。因此,学习有理数的有关概念以及运算,都必须注意与从前两个学段学过的数的概念及运算的衔接。 教科书把用字母表示数的知识运用于本章。例如,用a表示a的相反数;用字母表示求一个数的绝对值的结论;用字母表示有理数的减法法则、除法法则。这样做可以使问题的阐述更简明、更深入,同时,前面学过的数与代数的知识,也得到了巩固、加强和提高。 2把握好教学要求 对绝对值的要求,要有一个过程,有些要求要在今后的学习中落实,例如绝对值不等式等等。本章安排绝对值的概念,主要是为有理数的运算作准备的。会求一个数的绝对值就达到了上述要求。教科书中用字母表示求一个数的绝对值的结论,并不要求在绝对值符号中出现字母并加以讨论。 有理数运算中涉及的数应当比较简单,如果涉及的数比较复杂可以利用计算器解决,主要是确定结果的符号。对于有理数的混合运算,也要控制复杂程度。 3用好计算器 用计算器可以进行有理数的运算,这意味着没有必要要求学生进行复杂的笔算,使它们有更多的时间运用有理数的运算解决问题。 有理数运算的基本要求不能削弱。因此,用计算器进行有理数运算的内容,都要在学生掌握了相应运算以后再加以介绍。【篇三:人教版七年级数学上册教案全册】 第一章 有理数 单元教学内容 1本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系 引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念 2通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用: (1)数轴能反映出数形之间的对应关系 (2)数轴能反映数的性质w-w-w.x-k-b-1.c.-o-m (3)数轴能解释数的某些概念,如相反数、绝对值、近似数 (4)数轴可使有理数大小的比较形象化 3对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分 4正确理解绝对值的概念是难点 根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质: (1)任何有理数都有唯一的绝对值 (2)有理数的绝对值是一个非负数,即最小的绝对值是零 (3)两个互为相反数的绝对值相等,即a=-a (4)任何有理数都不大于它的绝对值,即aa,a-a (5)若a=b,则a=b,或a=-b或a=b=0 三维目标 1知识与技能 (1)了解正数、负数的实际意义,会判断一个数是正数还是负数 (2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解 (3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值(4)会利用数轴和绝对值比较有理数的大小 2过程与方法 经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法 3情感态度与价值观 使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言 重、难点与关键 1重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值 2难点:准确理解负数、绝对值等概念 3关键:正确理解负数的意义和绝对值的意义 课时划分 11 正数和负数 2课时 12 有理数 5课时 13 有理数的加减法4课时 14 有理数的乘除法5课时 15 有理数的乘方 4课时 第一章有理数(复习) 2课时 11正数和负数 第一课时 三维目标 一知识与技能 能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量 二过程与方法 借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性 三情感态度与价值观 培养学生积极思考,合作交流的意识和能力 教学重、难点与关键 1重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法 2难点:正确理解负数的概念3关键:创设情境,充分利用学生身边熟悉的事物,?加深对负数意义的理解 教具准备 投影仪 教学过程 四、课堂引入 我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数 在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2?页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7% 五、讲授新课 (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“”的数)叫做负数而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前 11面也加上“”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,?一个数前面33 的“”、“”号叫做它的符号,这种符号叫做性质符号 (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数 (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数 (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0,是指一个确定的温度;海拔0表示海平面的平均高度 用正负数表示具有相反意义的量 (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量?正数和负数在许多方面被广泛地应用在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m记录账目时,通常用正数表示收入款额,负数表示支出款额 (6)、 请学生解释课本中图11-2,图11-3中的正数和负数的含义 (7)、 你能再举一些用正负数表示数量的实际例子吗?(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量 六、巩固练习 课本第3页,练习1、2、3、4题 七、课堂小结 为了表示现实生活中的具有相反意义的量,我们引进了负数正数就是我们过去学过的数(除0外),在正数前放上“”号,就是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数如果原数是一个负数,那么前面放上“”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数 八、作业布置 1课本第5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论