




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.5单项式乘多项式的再认识因式分解(一),计算与交流计算:3752.8+3754.9+3752.3如何计算上面的算式?请把你的想法与你的同伴交流。,小明很快就能报出答案,你知道他是怎么想的吗?,小明的方法:,3752.8+3754.9+3752.3=375(2.8+4.9+2.3)=37510=3750,为什么3752.8+3754.9+3752.3可以写成375(2.8+4.9+2.3)?依据是什么?,乘法分配率,你能把多项式ab+ac+ad写成积的形式吗?请说明你的理由,根据乘法分配律,ab+ac+ad=a(b+c+d),换一种看法,就是把单项式乘多项式的法则A(b+c+d)=ab+ac+ad反过来,就得到,ab+ac+ad=a(b+c+d),观察多项式ab+ac+ad的每一项,你有什么发现吗?,a是多项式ab+ac+ad各项都含有的因式。,一个多项式各项都含有的因式,称为这个多项式各项的公因式。,例如a就是多项式ab+ac+ad各项的公因式,练一练,填表,ab,3x2,3ab,找一个多项式的公因式的方法一般分三个步骤:一看系数:当多项式的各项系数多是整数时,公因式的系数应取各项系数的最大公约数。,总结,二看字母:公因式的字母应取多项式中各项都含有的相同字母,三看指数:相同字母的指数取次数最低的。,把下列各式的公因式写在式子的后边,(1)3x2x(2)4x6(3)3mb22nb(4)7y221y(5)8a3b212a2bab(6)7x3y242x2y3(7)4a2b2ab2+6abc(8)7(a3)b(a3),填空并说说你的方法:(1)a2b+ab2=ab()(2)3x2-6x3=3x()(3)9abc-6a2b2+12abc2=3ab(),像这样,把一个多项式写成几个整式的积的形式叫做多项式的因式分解。,a+b,X-2x2,3c-2ab+4c,区别:整式乘法:有几个整式积的形式转化成一个多项式的形式。因式分解:有一个多项式的形式转化成几个整式的积的形式。,联系:多项式的因式分解与整式乘法是两种相反方向的变形,它们互为逆过程。,观察上面从左到右与从右到左的变形过程,你能说出因式分解和整式乘法的区别和联系吗?,用提取公因式分解因式的一般步骤:,第一步:找出多项式各项的公因式;,第二步:把多项式各项写成公因式与另一个因式的积的形式;,第三步:逆用单项式乘多项式法则写成公因式与另一个多项式的积。,注意:1、如果提取公因式与多项式中的某一项相同,那么提取后多项式中的这一项剩下“1”结果中的“1”不能漏写;,2、多项式有几项,提取公因式后另一项也有几项。,3、当多项式第一项的系数是负数时,通常把负号作为公因式的负号写在括号外,使括号内第一项的系数化为正数,在提出负号时,多项式的各项都要变号!,下列各式从左到右的变形,哪些是因式分解?,(1)6x2y32x2y3y;(2)abacd=a(bc)d(3)a21=(a1)(a1)(4)(a1)(a1)=a21(5)x21=x(x,),例1:分解因式(1)6a3b9a2b2c;(2)6a3b9a2b2c+3a2b(3)3a(xy)2b(xy)(4)5(x-y)+10y(y-x),课堂练习:把下列各式分解因式:(1)2m38m212m(2)8a2b24a2b2ab(3)(2ab)(2a3b)3a(2ab)(4)10(ab)25(ba)3(5)2m(m7)(7m)(m3),计算:2.3752.5+0.6352.5-452.5,解:2.3752.5+0.6352.5-452.5=52.5(2.37+0.63-4)=52.5(-1)=-52.5,小结,(1)公因式与分解因式的概念;,(2)如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 口腔健康宣导课件
- 文化创意产业园区品牌塑造策略研究-2025年产业集聚背景下的创新实践
- 小学生知识讲座课件
- 优抚资金使用管理办法
- 企业生产人员管理办法
- 保险新人出勤管理办法
- 中铁隧道安全管理办法
- 乙醇燃料流通管理办法
- 企业调取印模管理办法
- 工业互联网平台数据备份与恢复策略:工业4.0数据安全防护指南
- 一钢轧炼钢区2#转炉轴承更换
- 个人所得税专项附加扣除及个人所得税计算培训
- CSC-300系列发变组保护调试说明
- 辅导员基础知识试题及答案
- 火龙罐技术课件
- 输水管道施工监理实施细则
- 关于个人现实表现材料德能勤绩廉【六篇】
- 【吊车租赁合同范本】吊车租赁合同
- 电梯井道脚手架施工方案
- 《游戏力养育》读书笔记PPT模板思维导图下载
- 琦君散文-专业文档
评论
0/150
提交评论