已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,ThePrinciplesandGeometriesofKKTandOptimization,2,GeometriesofKKT:Unconstrained,Problem:Minimizef(x),wherexisavectorthatcouldhaveanyvalues,positiveornegativeFirstOrderNecessaryCondition(minormax):f(x)=0(f/xi=0foralli)isthefirstordernecessaryconditionforoptimizationSecondOrderNecessaryCondition:2f(x)ispositivesemidefinite(PSD)x2f(x)x0forallxSecondOrderSufficientCondition(GivenFONCsatisfied)2f(x)ispositivedefinite(PD)x2f(x)x0forallx,f/xi=0,xi,f,3,GeometriesofKKT:EqualityConstrained(oneconstraint),Problem:Minimizef(x),wherexisavectorSubjectto:h(x)=bFirstOrderNecessaryConditionforminimum(orformaximum):f(x)=h(x)forsomefree(isascalar)Twosurfacesmustbetangenth(x)=band-h(x)=-barethesame;thereisnosignrestrictionon,h(x)=b,4,GeometriesofKKT:EqualityConstrained(oneconstraint),FirstOrderNecessaryCondition:f(x)=h(x)forsomeLagrangian:L(x,)=f(x)-h(x)-b,MinimizeL(x,)overxandMaximizeL(x,)over.UseprinciplesofunconstrainedoptimizationL(x,)=0:xL(x,)=f(x)-h(x)=0L(x,)=h(x)-b=0,5,GeometriesofKKT:EqualityConstrained(multipleconstraints),Problem:Minimizef(x),wherexisavectorSuchthat:hi(x)=bifori=1,2,mKKTConditions(NecessaryConditions):Existi,i=1,2,m,suchthatf(x)=i=1nihi(x)hi(x)=bifori=1,2,mSuchapoint(x,)iscalledaKKTpoint,andiscalledtheDualVectorortheLagrangeMultipliers.Furthermore,theseconditionsaresufficientiff(x)isconvexandhi(x),i=1,2,m,arelinear.,6,GeometriesofKKT:Unconstrained,ExceptNon-NegativityCondition,Problem:Minimizef(x),wherexisavector,x0FirstOrderNecessaryCondition:f/xi=0ifxi0f/xi0ifxi=0Thus:f/xixi=0forallxi,orf(x)x=0,f(x)0Ifinteriorpoint(x0),thenf(x)=0Nothingchangesiftheconstraintisnotbinding,f/xi=0,xi,f,f/xi0,7,GeometryofKKT:InequalityConstrained(oneconstraint),Problem:Minimizef(x),wherexisavectorSubjectto:g(x)b.Assumefeasiblesetandsetofpointspreferredtoanypointareallconvexsets.(i.e.convexprogram)FirstOrderNecessaryCondition:f(x)=g(x)forsome0(isascalar)Ifconstraintisbindingg(x)=b,then0Ifconstraintisnone-bindingg(x)b,thenf(x)=0or=0,8,GeometriesofKKT:InequalityConstrained(oneconstraint),Foranypointxonthefrontierofthefeasibleregionofg(x)b,recallthat-g(x)isthedirectionofsteepestdescentofg(x)atx.Itisalsoperpendiculartothefrontierofg(x)=b,pointinginthedirectionofdecreasingg(x).Thus-g(x)isperpendiculartothetangenthyperplaneofg(x)=batx.,9,GeometriesofKKT:InequalityConstrained(oneconstraint),f(x)issimilarlyavectorperpendiculartothelevelsetoff(x)evaluatedatx:Sayf(x)=c.-f(x)isavectorpointedindirectionofdecreasingvalueoff(x).Also,-f(x)isperpendiculartothetangenthyperplaneoff(x)=catx.,x1,x2,f(x)=c(constant),-f(x),10,GeometriesofKKT:InequalityConstrained(oneconstraint),FirstOrderNecessaryCondition:f(x)=g(x)forsome0(isascalar)Ifconstraintisbindingg(x)=bthen0,x1,x2,g(x)b,f(x)constant,-f(x)isperpendiculartof(x)constant,-g(x)isperpendiculartofrontier:g(x)=b,-g(x),Atoptimum-g(x)and-f(x)mustbeparallel:twosurfacesmustbetangent,11,GeometriesofKKT:InequalityConstrained(oneconstraint),If-g(x)and-f(x)arenotparallel,therearefeasiblepointswithlessf(x).,12,GeometriesofKKT:InequalityConstrained(oneconstraint),If-g(x)and-f(x)areparallelbutinoppositedirection,therearefeasiblepointswithlessf(x).,x1,x2,g(x)b,f(x)constant,-g(x),-f(x),13,GeometriesofKKT:InequalityConstrained(oneconstraint),FirstOrderNecessaryCondition:f(x)=0ifconstraintisnotbindingg(x)b,X1,X2,f(x)decreasestowardsinkatthemiddle.Atoptimalpoint,f(x)=0Thiscanbeseesasanunconstrainedoptimum.,14,GeometriesofKKT:InequalityConstrained(oneconstraint),FirstOrderNecessaryCondition:f(x)=g(x)forsome0Ifconstraintisnon-bindingg(x)0then=0Lagrangian:L(x,)=f(x)-g(x)-b,s.t.0MinimizeL(x,)overxandMaximizeL(x,)over.UseprinciplesofunconstrainedoptimizationxL(x,)=f(x)-g(x)=0g(x)-b0,then=0.,15,GeometriesofKKT:InequalityConstrained(oneconstraint),Problem:Mimimizef(x),wherexisavectorSubjectto:g(x)bEquivalently:f(x)=g(x)g(x)b0g(x)b=0,16,GeometriesofKKT:InequalityConstrained(twoconstraints),Problem:Minimizef(x),wherexisavectorSubjectto:g1(x)b1andg2(x)b2FirstOrderNecessaryConditions:f(x)=1g1(x)+2g2(x),10,20f(x)liesintheconebetweeng1(x)andg2(x)g1(x)b11=0g2(x)b22=01g1(x)-b1=02g2(x)-b2=0Shadedareaisfeasiblesetwithtwoconstraints,x1,x2,-g1(x),-g2(x),-f(x),Bothconstraintsarebinding,17,GeometriesofKKT:InequalityConstrained(twoconstraints),Problem:Minimizef(x),wherexisavectorSubjectto:g1(x)b1andg2(x)b2FirstOrderNecessaryConditions:f(x)=1g1(x),10g2(x)b22=0g1(x)-b1=0Shadedareaisfeasiblesetwithtwoconstraints,x1,x2,-g1(x),-f(x),Firstconstraintisbinding,18,GeometriesofKKT:InequalityConstrained(twoconstraints),Problem:Minimizef(x),wherexisavectorSubjectto:g1(x)b1andg2(x)b2FirstOrderNecessaryConditions:f(x)=0g1(x)b11=0g2(x)b22=0Shadedareaisfeasiblesetwithtwoconstraints,x1,x2,f(x)=0,Noneconstraintisbinding,19,GeometriesofKKT:InequalityConstrained(twoconstraints),Lagrangian:L(x,1,2)=f(x)-1g1(x)-b1-2g2(x)-b2MinimizeL(x,1,2)overx.UseprinciplesofunconstrainedmaximizationL(x,1,2)=0(gradientwithrespecttoxonly)L(x,1,2)=f(x)-1g1(x)-2g2(x)=0Thusf(x)=1g1(x)+2g2(x)MaximizeL(x,1,2)over10,20.g1(x)-b10,then1=0g2(x)-b20,then2=0,20,KKT:InequalityConstrained(multipleconstraints),21,KKTConditions:InequalityCase,TheKarush-Kuhn-TuckerTheorem:Ifthefunctionf(x)hasaminimumatx*inthefeasiblesetandiff(x*)andgi(x*),i=1,2,m,exist,thenthereisanm-dimensionalvectorsuchthat0f(x*)-i=1migi(x*)=0igi(x*)-bi=0,fori=1,2,m.Suchapoint(x*,)iscalledaKKTpoint,andiscalledtheDualVectorortheLagrangeMultipliers.Furthermore,theseconditionsaresufficientif(aswehaveassumedhere)wearedealingwithaconvexprogrammingproblem,22,Example:KKTConditions,23,Example:KKTConditions,-f(x),g(x),Thecurve(surface)oftheobjectivefunctionistangentialtotheconstraintcurve(surface)attheoptimalpoint.,24,Example:ComputationoftheKKTCondition,If=0,thenx1=0andx2=0,andthustheconstraintwouldnotholdwithequality.Therefore,mustbepositive.Pluggingthetwovaluesofx1()andx2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装购销合同范本模板
- 交房为要签协议合同
- 室内设计销售试题带答案
- 2026-2031年中国扫描仪行业市场发展态势及投资前景可行性报告
- 铁路干部招聘题库及答案
- 彭阳消防考试题库及答案
- 工商银行实操考试题库及答案
- 栏目制作拍摄合同范本
- 基于校园场域的鸟类行为科普作品多维设计与创新创作研究
- 基于林龄差异的兴安落叶松人工林生物量与碳储量精准估算及生态意义探究
- 出库单模板电子版
- 木糖醇的生产工艺设计综述-课程设计
- 高血压的防治健康宣教
- MBEC项目管理标准手册
- WB/T 1087-2018煤炭仓储设施设备配置及管理要求
- GB/T 2566-2010低煤阶煤的透光率测定方法
- GB/T 13277.4-2015压缩空气第4部分:固体颗粒测量方法
- GB/T 11032-2020交流无间隙金属氧化物避雷器
- 社会保障概论讲义课件
- 三级安全培训记录表 (个人档案)
- 2023门球竞赛规则电子版图文并茂
评论
0/150
提交评论