




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,ThePrinciplesandGeometriesofKKTandOptimization,2,GeometriesofKKT:Unconstrained,Problem:Minimizef(x),wherexisavectorthatcouldhaveanyvalues,positiveornegativeFirstOrderNecessaryCondition(minormax):f(x)=0(f/xi=0foralli)isthefirstordernecessaryconditionforoptimizationSecondOrderNecessaryCondition:2f(x)ispositivesemidefinite(PSD)x2f(x)x0forallxSecondOrderSufficientCondition(GivenFONCsatisfied)2f(x)ispositivedefinite(PD)x2f(x)x0forallx,f/xi=0,xi,f,3,GeometriesofKKT:EqualityConstrained(oneconstraint),Problem:Minimizef(x),wherexisavectorSubjectto:h(x)=bFirstOrderNecessaryConditionforminimum(orformaximum):f(x)=h(x)forsomefree(isascalar)Twosurfacesmustbetangenth(x)=band-h(x)=-barethesame;thereisnosignrestrictionon,h(x)=b,4,GeometriesofKKT:EqualityConstrained(oneconstraint),FirstOrderNecessaryCondition:f(x)=h(x)forsomeLagrangian:L(x,)=f(x)-h(x)-b,MinimizeL(x,)overxandMaximizeL(x,)over.UseprinciplesofunconstrainedoptimizationL(x,)=0:xL(x,)=f(x)-h(x)=0L(x,)=h(x)-b=0,5,GeometriesofKKT:EqualityConstrained(multipleconstraints),Problem:Minimizef(x),wherexisavectorSuchthat:hi(x)=bifori=1,2,mKKTConditions(NecessaryConditions):Existi,i=1,2,m,suchthatf(x)=i=1nihi(x)hi(x)=bifori=1,2,mSuchapoint(x,)iscalledaKKTpoint,andiscalledtheDualVectorortheLagrangeMultipliers.Furthermore,theseconditionsaresufficientiff(x)isconvexandhi(x),i=1,2,m,arelinear.,6,GeometriesofKKT:Unconstrained,ExceptNon-NegativityCondition,Problem:Minimizef(x),wherexisavector,x0FirstOrderNecessaryCondition:f/xi=0ifxi0f/xi0ifxi=0Thus:f/xixi=0forallxi,orf(x)x=0,f(x)0Ifinteriorpoint(x0),thenf(x)=0Nothingchangesiftheconstraintisnotbinding,f/xi=0,xi,f,f/xi0,7,GeometryofKKT:InequalityConstrained(oneconstraint),Problem:Minimizef(x),wherexisavectorSubjectto:g(x)b.Assumefeasiblesetandsetofpointspreferredtoanypointareallconvexsets.(i.e.convexprogram)FirstOrderNecessaryCondition:f(x)=g(x)forsome0(isascalar)Ifconstraintisbindingg(x)=b,then0Ifconstraintisnone-bindingg(x)b,thenf(x)=0or=0,8,GeometriesofKKT:InequalityConstrained(oneconstraint),Foranypointxonthefrontierofthefeasibleregionofg(x)b,recallthat-g(x)isthedirectionofsteepestdescentofg(x)atx.Itisalsoperpendiculartothefrontierofg(x)=b,pointinginthedirectionofdecreasingg(x).Thus-g(x)isperpendiculartothetangenthyperplaneofg(x)=batx.,9,GeometriesofKKT:InequalityConstrained(oneconstraint),f(x)issimilarlyavectorperpendiculartothelevelsetoff(x)evaluatedatx:Sayf(x)=c.-f(x)isavectorpointedindirectionofdecreasingvalueoff(x).Also,-f(x)isperpendiculartothetangenthyperplaneoff(x)=catx.,x1,x2,f(x)=c(constant),-f(x),10,GeometriesofKKT:InequalityConstrained(oneconstraint),FirstOrderNecessaryCondition:f(x)=g(x)forsome0(isascalar)Ifconstraintisbindingg(x)=bthen0,x1,x2,g(x)b,f(x)constant,-f(x)isperpendiculartof(x)constant,-g(x)isperpendiculartofrontier:g(x)=b,-g(x),Atoptimum-g(x)and-f(x)mustbeparallel:twosurfacesmustbetangent,11,GeometriesofKKT:InequalityConstrained(oneconstraint),If-g(x)and-f(x)arenotparallel,therearefeasiblepointswithlessf(x).,12,GeometriesofKKT:InequalityConstrained(oneconstraint),If-g(x)and-f(x)areparallelbutinoppositedirection,therearefeasiblepointswithlessf(x).,x1,x2,g(x)b,f(x)constant,-g(x),-f(x),13,GeometriesofKKT:InequalityConstrained(oneconstraint),FirstOrderNecessaryCondition:f(x)=0ifconstraintisnotbindingg(x)b,X1,X2,f(x)decreasestowardsinkatthemiddle.Atoptimalpoint,f(x)=0Thiscanbeseesasanunconstrainedoptimum.,14,GeometriesofKKT:InequalityConstrained(oneconstraint),FirstOrderNecessaryCondition:f(x)=g(x)forsome0Ifconstraintisnon-bindingg(x)0then=0Lagrangian:L(x,)=f(x)-g(x)-b,s.t.0MinimizeL(x,)overxandMaximizeL(x,)over.UseprinciplesofunconstrainedoptimizationxL(x,)=f(x)-g(x)=0g(x)-b0,then=0.,15,GeometriesofKKT:InequalityConstrained(oneconstraint),Problem:Mimimizef(x),wherexisavectorSubjectto:g(x)bEquivalently:f(x)=g(x)g(x)b0g(x)b=0,16,GeometriesofKKT:InequalityConstrained(twoconstraints),Problem:Minimizef(x),wherexisavectorSubjectto:g1(x)b1andg2(x)b2FirstOrderNecessaryConditions:f(x)=1g1(x)+2g2(x),10,20f(x)liesintheconebetweeng1(x)andg2(x)g1(x)b11=0g2(x)b22=01g1(x)-b1=02g2(x)-b2=0Shadedareaisfeasiblesetwithtwoconstraints,x1,x2,-g1(x),-g2(x),-f(x),Bothconstraintsarebinding,17,GeometriesofKKT:InequalityConstrained(twoconstraints),Problem:Minimizef(x),wherexisavectorSubjectto:g1(x)b1andg2(x)b2FirstOrderNecessaryConditions:f(x)=1g1(x),10g2(x)b22=0g1(x)-b1=0Shadedareaisfeasiblesetwithtwoconstraints,x1,x2,-g1(x),-f(x),Firstconstraintisbinding,18,GeometriesofKKT:InequalityConstrained(twoconstraints),Problem:Minimizef(x),wherexisavectorSubjectto:g1(x)b1andg2(x)b2FirstOrderNecessaryConditions:f(x)=0g1(x)b11=0g2(x)b22=0Shadedareaisfeasiblesetwithtwoconstraints,x1,x2,f(x)=0,Noneconstraintisbinding,19,GeometriesofKKT:InequalityConstrained(twoconstraints),Lagrangian:L(x,1,2)=f(x)-1g1(x)-b1-2g2(x)-b2MinimizeL(x,1,2)overx.UseprinciplesofunconstrainedmaximizationL(x,1,2)=0(gradientwithrespecttoxonly)L(x,1,2)=f(x)-1g1(x)-2g2(x)=0Thusf(x)=1g1(x)+2g2(x)MaximizeL(x,1,2)over10,20.g1(x)-b10,then1=0g2(x)-b20,then2=0,20,KKT:InequalityConstrained(multipleconstraints),21,KKTConditions:InequalityCase,TheKarush-Kuhn-TuckerTheorem:Ifthefunctionf(x)hasaminimumatx*inthefeasiblesetandiff(x*)andgi(x*),i=1,2,m,exist,thenthereisanm-dimensionalvectorsuchthat0f(x*)-i=1migi(x*)=0igi(x*)-bi=0,fori=1,2,m.Suchapoint(x*,)iscalledaKKTpoint,andiscalledtheDualVectorortheLagrangeMultipliers.Furthermore,theseconditionsaresufficientif(aswehaveassumedhere)wearedealingwithaconvexprogrammingproblem,22,Example:KKTConditions,23,Example:KKTConditions,-f(x),g(x),Thecurve(surface)oftheobjectivefunctionistangentialtotheconstraintcurve(surface)attheoptimalpoint.,24,Example:ComputationoftheKKTCondition,If=0,thenx1=0andx2=0,andthustheconstraintwouldnotholdwithequality.Therefore,mustbepositive.Pluggingthetwovaluesofx1()andx2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民转幼儿园后勤工作总结与纸尿裤售后培训
- 关于名人的爱情故事
- 2026届内蒙古呼伦贝尔市九年级化学第一学期期末学业水平测试模拟试题含解析
- 街道亮点工作总结
- 2026届重庆市南开融侨中学九年级化学第一学期期末复习检测试题含解析
- 研发中心年终总结报告
- 浙江省宁波市鄞州区七校2026届九年级英语第一学期期末学业质量监测试题含解析
- 重庆綦江南川巴县2026届化学九年级第一学期期中综合测试模拟试题含解析
- 2026届江西省育华学校九年级英语第一学期期末达标检测模拟试题含解析
- 山东省淄博市沂源县第二中学2024-2025学年高二上学期11月期中考试政治试卷(含答案)
- GB/T 5563-2013橡胶和塑料软管及软管组合件静液压试验方法
- GB/T 3600-2000肥料中氨态氮含量的测定甲醛法
- GB 2715-2005粮食卫生标准
- OA流程表单案例
- 医师多点执业注册申请表
- 《边坡稳定性分析》课件
- 刮板输送机-课件
- 深信服防火墙技术方案
- 福建省福州市各县区乡镇行政村村庄村名明细及行政区划代码
- 临床路径病种目录
- 车辆交接协议书(标准版)
评论
0/150
提交评论