




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.4角平分线,第一章三角形的证明,第2课时三角形三条内角的平分线,1会证明和运用“三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等”.(重点)2.经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力(难点),学习目标,在一个三角形居住区内修有一个学校P,P到AB、BC、CA三边的距离都相等,请在三角形居住区内标出学校P的位置,P在何处?,导入新课,情境引入,活动1分别画出下列三角形三个内角的平分线,你发现了什么?,发现:三角形的三条角平分线相交于一点.,讲授新课,活动2分别过交点作三角形三边的垂线,用刻度尺量一量,每组垂线段,你发现了什么?,发现:过交点作三角形三边的垂线段相等.,你能证明这个结论吗?,剪一个三角形纸片,通过折叠找出每个角的角平分线,观察这三条角平分线,你是否发现同样的结论?与同伴交流,结论:三角形三个角的平分线相交于一点.,试一试,点拨:要证明三角形的三条角平分线相交于一点,只要证明其中两条角平分线的交点一定在第三条角平分线上即可.思路可表示如下:,试试看,你会写出证明过程吗?,D,E,I,G,已知:如图,ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.,证明结论,证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.,BM是ABC的角平分线,点P在BM上,PD=PE.同理PE=PF.PD=PE=PF.即点P到三边AB,BC,CA的距离相等.,D,E,F,想一想:点P在A的平分线上吗?这说明三角形的三条角平分线有什么关系?,点P在A的平分线上.,结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.,D,E,F,例1.如图,在ABC中,已知AC=BC,C=90,AD是ABC的角平分线,DEAB,垂足为E.(1)如果CD=4cm,AC的长;,(1)解:AD是ABC的角平分线,DEAB,垂足为E,DE=CD=4cm.AC=BC,B=BAC.C=90,B=45.BE=DE.在等腰直角三角形BDE中,,(2)求证:AB=AC+CD.,(2)证明:由(1)的求解过程易知,RtACDRtAED(HL).AC=AE.BE=DE=CD,AB=AE+BE=AC+CD.,E,O,例2:如图,在直角ABC中,AC=BC,C90,AP平分BAC,BD平分ABC;AP,BD交于点O,过点O作OMAC,若OM4,(1)求点O到ABC三边的距离和.,温馨提示:不存在垂线段构造应用,12,解:连接OC,(2)若ABC的周长为32,求ABC的面积.,例3如图,在ABC中,点O是ABC内一点,且点O到ABC三边的距离相等若A40,则BOC的度数为(),A110B120C130D140,A,解析:由已知,O到三角形三边的距离相等,所以O是内心,即三条角平分线的交点,AO,BO,CO都是角平分线,所以有CBOABOABC,BCOACOACB,ABCACB18040140,OBCOCB70,BOC18070110.,当堂练习,1.如图,已知ABC,求作一点P,使P到A的两边的距离相等,且PAPB下列确定P点的方法正确的是()A.P为A,B两角平分线的交点B.P为A的平分线与AB的垂直平分线的交点C.P为AC,AB两边上的高的交点D.P为AC,AB两边的垂直平分线的交点,B,【解析】点P到A的两边的距离相等,P在A的角平分线上,PAPB,点P在AB的垂直平分线上.P为A的平分线与AB的垂直平分线的交点.,2.如图,ABC中,C=90,DEAB,CBE=ABE,且AC=6cm,那么线段BE是ABC的,AE+DE=.,C,角平分线,6cm,3.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.ABC的三条中线的交点B.ABC三边的中垂线的交点C.ABC三条角平分线的交点D.ABC三条高所在直线的交点,C,4.已知:如图,ABC中,C=90,AD是ABC的角平分线,DEAB于E,F在AC上,BD=DF.求证:CF=EB.,证明:AD平分CAB,DEAB,C90(已知),CDDE(角平分线的性质).在RtCDF和RtEDB中,CD=ED(已证),DF=DB(已知),RtCDFRtEDB(HL).CF=EB(全等三角形的对应边相等).,C,拓展思维,5.如图,直线l1、l2、l3表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可选择
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲方发三方协议合同模板
- 空调用工兼职合同协议书
- 煤油购销合同协议书模板
- 物业公司聘用协议书模板
- 离婚协议算不算一种合同
- 电厂脱硫塔采购合同范本
- 门窗修缮合同协议书范本
- 移动机器人采购合同范本
- 消防维保合同协议书模板
- 网签版技术服务合同范本
- 2024年广东梅州市梅江区招考公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 《电力用磷酸铁锂电池通信电源系统技术规范》
- 人事行政部内部培训
- 臀位分娩课件PPT
- 乳制品企业食品安全培训
- 《常见猪的品种》课件
- 2023初中历史教师进城选调考试模拟试题及答案(五套)
- 统编版语文八年级下册全册大单元教学整体分析
- DB21-T 2935-2018辽西北退化农田防护林修复技术规程
- 新厂建设投产总结汇报
- 精神病患者用药指导
评论
0/150
提交评论