




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第23章相似图形的性质,23.3.3相似三角形性质,角相等;边,高,中线,中位线,角分线比;面积比,会应用相似三角形的有关性质,测量简单的物体的高度或宽度.自己设计方案测量高度,体会相似三角形在解决实际问题中的广泛应用.,教学重点构建相似三角形解决实际问题.教学难点把实际问题抽象为数学问题,利用相似三角形来解决.,复习相似三角形的识别方法,方法1:两角对应相等,两三角形相似,方法2:两边对应成比例且夹角相等,两三角形相似,方法3:三边对应成比例,两三角形相似,回顾:相似三角形的性质?,1.相似三角形的对应边成比例,对应角相等,2.相似三角形的对应高、对应角平分线、对应中线的比等于相似比,3.相似三角形的周长比等于相似比,4.相似三角形的面积比等于相似比的平方,在阳光下,在同一时刻,物体的高度与物体的影长存在某种关系:物体的高度越高,物体的影长就越长,在平行光线的照射下,不同物体的物高与影长成比例,A,C,B,D,E,给你,一把皮尺,一面平面镜.你能利用所学知识来测出塔高吗?,皮尺,平面镜,A,C,B,D,E,给你一条1米高的木杆,一把皮尺.你能利用所学知识来测出塔高吗?,1米木杆,皮尺,例1古代一位数学家想出了一种测量金字塔高度的方法:如图所示,为了测量金字塔的高度OB,先竖一根已知长度的木棒OB,比较棒子的影长AB与金字塔的影长AB,即可近似算出金字塔的高度OB如果OB1,AB2,AB274,求金字塔的高度OB.,o,B,A,o,B,A,答:该金字塔高度OB为137米,(米),解:,太阳光是平行光线,,OABOAB,又ABOABO90,OABOAB,,OB,测高的方法,测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成正比例”的原理解决。,变式1.某同学想利用树影测量树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高多少米?,D,6.4,1.2,?,1.5,1.4,A,B,c,解:作DEAB于E得AE=8AB=8+1.4=9.4米,物体的影长不等于地上的部分加上墙上的部分,甲,拓展:已知教学楼高为12米,在距教学楼9米的北面有一建筑物乙,此时教学楼会影响乙的采光吗?,12,9.6,D,E,A,F,E,B,O,还可以有其他方法测量吗?,一题多解,=,ABOAEF,OB=,平面镜,例如图:为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使ABBC,然后,再选点E,使ECBC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.,A,方法一:如图:为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使ABBC,然后,再选点E,使ECBC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.,A,解:,ADB=EDCABC=ECD=900.ABDECDABEC=BDCDAB=BDEC/CD=12050/60=100(米)答:两岸间的大致距离为100米。,方法二:我们还可以在河对岸选定一目标点A,再在河的一边选点D和E,使DEAD,然后,再选点B,作BCDE,与视线EA相交于点C。此时,测得DE,BC,BD,就可以求两岸间的大致距离AB了。,此时如果测得DE90米,BC60米,BD50米,求两岸间的大致距离AB,测量河的宽度,测量原理:测量不能直接到达的两点间的距离,常构造相似三角形求解。测量方法:,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使ABBC,然后,再选点E,使ECBC,用视线确定BC和AE的交点D.此时如果测得BD,DC,EC的长,根据相似三角形对应边的比求出河宽AB.,测距的方法,测量不能到达两点间的距离,常构造相似三角形求解。,练习,3.为了测量一池塘的宽AB,在岸边找到了一点C,使ACAB,在AC上找到一点D,在BC上找到一点E,使DEAC,测出AD=35m,DC=35m,DE=30m,那么你能算出池塘的宽AB吗?,解:,C=CCAB=CDE=900.ABCEDC又DE=30m,AD=35m,DC=35mAC=AD+DC=70m,ABDE=ACDCAB=DEAC/CD=3070/35=60(米)答:池塘宽AB为60米。,证明:ADE=C,A=A,ADEACB(两角分别相等的两个三角形相似).,例3如图,已知D、E是ABC的边AB、AC上的点,且ADE=C.求证:ADAB=AEAC.,分析:把等积式化为比例式,ADAB=AEAC.,猜想ADE与ABC相似,从而找条件加以证明.,如图,在ABC中DEBC,BC=6,梯形DBCF的面积是ADE面积的3倍,求:DE长。,分析:面积比等于相似比的平方又SDBCE=3SADESABC=SDBCD+SADE且DEBC,1.相似三角形的应用主要有两个方面:,(1)测高,测量不能到达两点间的距离,常构造相似三角形求解。,(不能直接使用皮尺或刻度尺量的),(不能直接测量的两点间的距离),测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决。,(2)测距,2.解相似
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代风格课件
- 现代舞鉴赏课件
- 2025年秋季经济师考试 经济基础知识强化练习试卷
- 2025年教师资格证考试《教育知识与能力》模拟试卷
- 2025年银行从业资格考试 银行管理基础知识押题精讲试卷
- 2025年公务员考试行测常识判断专项试卷 历史文化知识强化
- 2025年公共营养师二级考试真题解析卷:专项训练与押题预测
- 民法典总则亮点课件
- 2026届安徽省东至三中化学高三第一学期期末复习检测模拟试题含解析
- 山东省泰安市宁阳第一中学2026届化学高一上期中考试试题含解析
- 2024至2030年DC/DC转换器项目投资价值分析报告
- 关节活动维持与改善技术
- 湖南省长沙市师大附中博才实验中学2024-2025学年九年级上学期开学考试语文试题
- 电网劳务分包投标方案(技术方案)
- 第三课 我国的经济发展(课件)
- 人教部编版三年级道德与法治上册全册教案(全册)
- 2024年临时工劳动合同范本
- 加油站居间合同协议书范本2024版
- 中考强化训练河北省保定市中考数学五年真题汇总 卷(Ⅲ)(含答案详解)
- DLT802.7-2023电力电缆导管技术条件第7部分非开挖用塑料电缆导管
- 2024年杭州市中小学教师教学能力水平考核及答案
评论
0/150
提交评论