


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
工作总结参考范本高中数学数列知识点总结撰写人:_时 间:_高中数学数列知识点总结:等差数列公式等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:sn=na1+n(n-1)/2 d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值=首项+(项数-1)*公差前n项的和=(首项+末项)*项数/2公差=后项-前项高中数学数列知识点总结:等比数列公式等比数列求和公式(1) 等比数列:a (n+1)/an=q (nn)。(2) 通项公式:an=a1q(n-1); 推广式:an=amq(n-m);(3) 求和公式:sn=na1 (q=1) sn=a1(1-qn)/(1-q) =(a1-anq)/(1-q) (q1) (q为公比,n为项数)(4)性质:若 m、n、p、qn,且m+n=p+q,则aman=apaq;在等比数列中,依次每 k项之和仍成等比数列.若m、n、qn,且m+n=2q,则aman=aq2(5)g是a、b的等比中项g2=ab(g 0).(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。等比数列求和公式推导: sn=a1+a2+a3+.+an(公比为q) q*sn=a1*q+a2*q+a3*q+.+an*q =a2+a3+a4+.+a(n+1) sn-q*sn=a1-a(n+1) (1-q)sn=a1-a1*qn sn=(a1-a1*qn)/(1-q) sn=(a1-an*q)/(1-q) sn=a1(1-qn
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息抽取中的上下文理解技术-洞察及研究
- 直播带货市场潜力分析-洞察及研究
- 材料基因组数据挖掘与模式识别-洞察及研究
- 电竞赛事数据分析-洞察及研究
- 2025西藏阿里地区人民医院招聘8人笔试模拟试题及答案解析
- 在线教育平台课程开发与运营案例
- 云计算在小学教学中的落地应用
- 雅安市文旅融合发展服务中心2025年公开选调事业人员(3人)笔试参考题库附答案解析
- 2025山东盐碱地现代农业有限责任公司招聘6人笔试参考题库附答案解析
- 2025年合肥市社会化工会工作者招聘34人笔试备考题库及答案解析
- 妇科专业疾病临床诊疗规范2025年版
- 2025年自学考试《00504艺术概论》考试复习题库(含答案)
- T/CHES 117-2023城市河湖底泥污染状况调查评价技术导则
- T/CHES 98-2023取水口设施标准化建设与管理技术规程
- 平安医院建设试题及答案
- 专项项目贡献证明书与业绩认可函(8篇)
- 2025年广东省广州市中考二模英语试题(含答案)
- 消防员心理测试题库及答案解析
- 贷后管理协议合同
- 罗才军《少年闰土》省公开课一等奖全国示范课微课金奖课件
- 2025小升初租房合同模板
评论
0/150
提交评论