




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 6 平面向量的坐标 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 平面向量的坐标 一、教学目标: 1.知识与技能 ( 1)掌握平面向量正交分解及其坐标表示 . ( 2)会用坐标表示平面向量的加、减及数乘运算 . ( 3)理解用坐标表示的平面向量共线的条件 . 2.过程与方法 教材利用正交分解引出向量的坐标,在此基础上得到平面向量线性运算的坐标表示及向量平行的坐标表示;最后通过讲解例题,巩固知识结论,培养学生应用能力 . 3.情感态度价值观 通过本节内容的学习,使同学们对认识到在全体有序实数 对与坐标平面内的所有向量之间可以建立一一对应关系(即点或向量都可以看作有序实数对的直观形象);让学生领悟到数形结合的思想;培养学生勇于创新的精神 . 二 .教学重、难点 重点 :平面向量线性运算的坐标表示及向量平行的坐标表示 . 难点 :平面向量线性运算的坐标表示及向量平行的坐标表示 . 三 .学法与教学用具 学法: (1)自主性学习 +探究式学习法: 2 / 6 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距 . 教学用具 :电脑、投影机 . 四 .教学设想 【创设情境】 (回忆)平面向量的基 本定理(基底) =1+2 其实质:同一平面内任一向量都可以表示为两个不共线向量的线性组合 . 【探究新知】 (一)、平面向量的坐标表示 1在坐标系下,平面上任何一点都可用一对实数 (坐标 )来表示 思考:在坐标系下,向量是否可以用坐标来表示呢? 取轴、轴上两个单位向量 ,作基底,则平面内作一向量 记作: =(x,y)称作向量的坐标 如: =(2,2)=(2,1) =(1,5)=(1,0)=(0,1)=(0,0) 由以上例子让学生讨论 : 向量的坐标与什么点的坐标有关? 每一平面向量的坐标表示是否唯一的? 两个向量相等的条件是?(两个向量坐标相等) 3 / 6 展示投影 思考与交流: 直接由学生讨论回答: 思考 1( 1)已知 (x1,y1)(x2,y2)求 +, 的坐标 (2)已知 (x,y)和实数 , 求 的坐标 解: +=(x1+y1)+(x2+y2)=(x1+x2)+(y1+y2) 即: +=(x1+x2,y1+y2) 同理: =(x1x2,y1y2) =(x+y )=x+y =(x,y) 结论: . 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差 . . 实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。 思考 2.已知你觉得的坐标与 A、 B 点的坐标有什么关系? =(x2,y2)(x1,y1) =(x2x1,y2y1) 结论: . 一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。 展示投影 例题讲评(学生先做,学生讲,教师提示或适当补充) 例 1.已知三个力 (3,4),(2,5),(x,y)的合力 += 求的坐标 . 4 / 6 解:由题设 +=得: (3,4)+(2,5)+(x,y)=(0,0) 即: (5,1) 例 4. 已 知 平 面 上 三 点 的 坐 标 分 别 为A(2,1),B(1,3),c(3,4),求点 D 的坐标使这四点构成平行四边形四个顶点。 解:当平行四边形为 ABcD时, 仿例 2 得: D1=(2,2) 当平行四边形为 AcDB时, 仿例 2 得: D2=(4,6) 当平行四边形为 DAcB时, 仿例 2 得: D3=(6,0) 【巩固深化,发展思维】 1若 m(3,-2)N(-5,-1)且 ,求 P 点的坐标; 解:设 P(x,y)则 (x-3,y+2)=(-8,1)=(-4,) P 点坐标为 (-1,-) 2若 A(0,1),B(1,2),c(3,4)则 2=(-3,-3) 3已知:四点 A(5,1),B(3,4),c(1,3),D(5,-3)求证:四边形 ABcD是梯形。 解: =( -2,3)=(-4,6)=2 且 | 四边形 ABcD是梯形 【探究新知】 展示投影 思考与交流: 5 / 6 思考:共线向量的条件是有且只有一个实数 使得 = ,那么这个条件如何用坐标来表示呢? 设其中 由得 消去 : 中至少有一个不为 0 结论: () 用坐标表示为 注意: 消去 时不能两式相除 y1,y2 有可能为 0. 这个条件不能写成 有可能为 0. 向量共线的两种判定方法: () 展示投影 例题讲评(学生先做,学生讲,教师提示或适当补充) 例 5.如果向量 向量,试确定实数 m 的值使 A、 B、 c 三点共线 解法 1.利用可得于 是得 解法 2.易得 故当时,三点共线 例 6.若向量 =(-1,x)与 =(-x,2)共线且方向相同,求 x 解: =( -1,x)与 =(-x,2)共线 ( -1)2 -x(-x)=0 x= 与方向相同 x= 学习小结 (学生总结,其它学生补充) 【巩固深化,发展思维】 6 / 6 1.教材 P89练习 2-4 2.已知 3已知点 A(0,1)B(1,0)c(1,2)D(2,1)求证: ABcD 4证明下列各组点共线: A(1,2) , B(-3,4), c(2,) P( -1,2), Q(,0), R(5,-6) 5已知向量 =(-1,3)=(x,-1)且 求 x. 学习小结 (学生总结,其它学生补充) 向量加法运算的坐标表示 . 向量减法运算的坐标表示 . 实数与向量的积的坐标表示 . 向量共线的条件 . 五、评价设计 1作业:习题 2-4A组第 1, 2, 3, 7, 8 题 2(备选题):已知 A(-1,-1)B(1,3)c(1,5)D(2,7)向量与平行吗?直线 AB与平行于直线 cD吗? 解: =(1 -(-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州福泉市4月招聘城镇公益性岗位考前自测高频考点模拟试题附答案详解(模拟题)
- 2025广东佛山市商务局招考专业技术雇员1人模拟试卷附答案详解
- 2025年南通醋酸纤维有限公司招聘(36人)模拟试卷完整参考答案详解
- 2025届春季雅砻江公司校园招聘正式启动模拟试卷及答案详解(名校卷)
- 2025江苏连云港灌江农业发展集团有限公司招聘拟聘(第二批)模拟试卷及一套参考答案详解
- 2025广西柳州市城中区人民法院招录3人(二)考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025北京市海淀区第二实验小学教育集团招聘模拟试卷及一套参考答案详解
- 2025江苏苏州市相城招商(集团)有限公司人员招聘模拟试卷及答案详解(典优)
- 2025贵州贵阳学院高层次人才引进15人模拟试卷及完整答案详解一套
- 2025年河北雄安新区雄县事业单位公开招聘工作人员89名模拟试卷及答案详解(各地真题)
- 汽车修理安全课件
- 2025年书记在公文抄袭问题专项整治工作会议上的讲话范文
- GB/T 17219-2025生活饮用水输配水设备、防护材料及水处理材料卫生安全评价
- 省级人文社科课题申报书
- 2025年合肥市公安局第二批公开招聘警务辅助人员633名考试参考题库及答案解析
- 2025年海工装备行业研究报告及未来发展趋势预测
- 高考物理力学专题复习指导方案
- 高三试卷:2025届浙江省新阵地联盟高三10月联考历史答案
- 医疗机构麻醉药品和精神药品使用管理和考核培训规定
- 主题一 4. 创建我们的“健康银行”(课件) 综合实践活动教科版五年级上册
- 2025农村果园租赁合同示范文本
评论
0/150
提交评论