




已阅读5页,还剩73页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,主讲:,大学物理B课程介绍,课时:48,质点运动学、,质点动力学、,刚体的转动、,静电场、,稳恒磁场、,电磁感应。,振动、,波动、,波动光学、,狭义相对论、,量子物理。,考核方式:期末考试(70%)+平时成绩(30%),平时成绩:,旷课:-10分/次,实验:60分,缺交作业:-10分/次,作业未完成:-5分/次,作业考勤:40分,要求:,*准备两个作业本;,*每次都带作业本来上课。,上台做练习:+5分/次,初值:35分,第一讲质点运动学,PARTICLEKINEMATICS,下列哪些问题中研究对象可以当作质点?,铲车沿曲线路径行进的运动,车轮的转动,高尔夫球的抛物线运动,球棒因受力所做的摆动,结论:,只有当我们研究物体的平动时才能将其看作质点。,各式各样的运动方程:,1、坐标表示的运动方程:,2、位矢表示的运动方程:,3、弧长表示的运动方程:,4、角度表示的运动方程:,(简谐振动),(平抛),(匀加速圆周运动),(匀变速率运动),位置的描述:,*,坐标(x,y,z),描述一:,缺点:,用于二、三维运算时不方便。,(coordinates),优点:,用于一维运动很直观。,返回,位置的描述:,*,描述二:,位置矢量,优点:,用一个变量来描述质点的位置,便于呈现物理量之间的关系。,(positionvector),缺点:,抽象。,返回,位置的描述:,描述三:,路程,优点:,用一维的方法处理二维问题,使计算简化。,(distance),缺点:,只适合在轨迹确定的前提下运用。,返回,位置的描述:,描述四:,角度,(angulardisplacement),优点:,用一维的方法处理二维问题,使计算简化。,缺点:,只能用于圆周运动。,返回,位移、速度和加速度,位移,速度,平均速度,平均加速度,加速度,(displacement),(averagevelocity),(velocity),(averageacceleration),(acceleration),运动方程,(kinematicequations),轨迹方程,运动方程:,消去t,轨迹方程:,(kinematicequations),(trajectoryequations),例1:,已知质点的运动方程为:,(SI),求:(1)t=0及t=2s时质点的位矢;,(2)t=0到t=2s内质点的位移;,(3)t=2s时质点的速度、加速度;,(4)质点的运动轨迹。,解:,(2),(3),(4),(1),运动方程,路程,角位移,运动方程,速率,角速度,切向加速度,角加速度,圆周运动中线量与角量的对应关系,法向加速度,例2:,一质点沿半径为R的圆周按规律:,解:,都是常量。求t时刻质点加速度的大小。,而运动,,练习1:,质点沿半径为0.1m的圆周运动,其角位移:,求t=2s时,速度的大小及加速度的大小;,各式各样的运动方程:,1、坐标表示的运动方程:,2、位矢表示的运动方程:,3、路程表示的运动方程:,4、路程表示的运动方程:,(简谐振动),(平抛),(匀加速圆周运动),(匀变速率运动),振动方程的物理意义?,振动方程:,振动速度:,振动加速度:,旋转矢量法:(Rotatevectormethod),*该动画来源于互联网,例3:,解:,作该振动的旋转矢量图,由旋转矢量图可知:,运动方程:,点P对应的相位:,某质点的振动曲线如图所示,试求运动方程,及P点的相位。,一质点做简谐振动,其振动周期T=2s。t=0时的旋转矢量如图所示。,练习2:,(1)请写出它的振动方程;,(2)初始时刻振子的速率;,(3)第一次到达平衡位置的时间;,同频率简谐振动的相位差比较:,设两个简谐运动的表达式分别为:,相位差:,1、2同相,1、2反相,2超前,2落后,两个同周期简谐振动曲线如图所示x1的相位比x2的相位:()(A)落后。(B)超前。(C)落后。(D)超前。,例4:,同方向同频率的振动的合成:,设一质点同时参与两个简谐振动:,例5:,两个同方向的简谐振动曲线如图所示,求合振动的振动方程。,横波:质点振动方向与波的传播方向相垂直的波.,横波:(transversewave),*该动画来源于互联网,纵波:质点振动方向与波的传播方向相平行的波.,纵波:(longitudinalwave),*该动画来源于互联网,1、(波源)振动源,2、能传播机械振动的弹性介质,机械波:(Mechanicalwave),纵波:能在各种介质中传播,横波:只能在固体中传播,机械波产生的条件:,2、波线、波面、波前,几个常用概念:,1、波长、周期、频率、波速,球面波,波面,波线,波前,平面波,波动过程的描述:,点P振动方程:,设点x0处振动方程:,*该动画来源于互联网,点P相位比x0处落后:,已知一平面简谐波沿OX轴负方向传播,波长为,P处质点的振动方程是:,例6:,求该波的表达式。,解:,x处质点的振动相位比P点超前:,所以x点振动方程为:,此方程即为该波的表达式。,波的叠加:(superpositionprinciple),相遇时:,质元的振动为各列波单独存在时引起振动的合振动。,相遇后:,各列波保持原来的特征继续传播。,波的叠加原理,干涉现象:,思考:,两列波叠加时要想产生干涉现象需满足哪些条件?,*振幅相同?,*频率相同?,*相位相同?,*振动方向相同?,*初相位相同?,*相位差恒定?,*运动方向相同?,*传播方向相同?,波的干涉:(interference),波源:,P点:,相位差:,相干相消,相干相长,相干条件:,同频、同向、恒定相位差,思考:,两列波叠加时要想产生干涉现象需满足哪些条件?,*振幅相同?,*频率相同?,*相位相同?,*振动方向相同?,*初相位相同?,*相位差恒定?,*运动方向相同?,*传播方向相同?,半波损失:,无半波损失:,衍射:,波能够绕过障碍物继续传播的现象。,衍射:(diffraction),观察者或波源相对于介质运动时,观察者接收到的波频率与波源发出的频率不相同的现象。,多普勒效应:(Dopplereffect),多普勒效应:,(Dopplereffect),观察者接收到的频率:,观察者不动,波源以速度Vs向着波源运动,波源不动,观察者以速度V0向着波源运动,观察者接收到的频率:,波源发出的频率:,波源相对于介质高速运动,穿越音障,穿越音障,彩色多普勒超声照片,多普勒天气雷达,多普勒感应开关,第二讲质点动力学和刚体的转动,ROTATIONOFRIGIDBODY,匀速直线运动:(uniformmotion),运动方程,(C为常矢量),匀加速直线运动:(uniformlyacceleratedmotion),运动方程,平抛运动:(aclinicparabolicmotion),运动方程,更一般的情况:,3、质点沿直线运动,加速度为(SI),初始时刻位于x=3m处,v=4m/s;求5s时质点的位置。,研究质点运动的目标:,找出位置随时间变换的函数运动方程。,更一般的情况:,3、质点沿直线运动,加速度为(SI),初始时刻位于x=3m处,v=4m/s;求5s时质点的位置。,解:,练习3:,半径为30cm的飞轮,从静止开始以0.5rad/s2的匀角加速度转动。求运动方程。,牛顿定律:,Newtonsfirstlawofmotion:,(lawofinertial),Newtonssecondlawofmotion:,Newtonsthirdlawofmotion:,动量守恒定律,动量定理,功,动能定理,力学定理及守恒律:,刚体的运动:(motionofrigidbody),平动,定轴转动,(translation),(fixed-axisrotation),进动,(precession),刚体定轴转动的运动学描述:,运动方程:,角速度:,角加速度:,线速度:,切向加速度:,法向加速度:,(kinematicequations),(angularvelocity),(angularacceleration),(linearvelocity),(tangentialacceleration),(radialacceleration),问题:质量能描述刚体转动时惯性的大小吗?,结论:质量不能描述刚体转动时惯性的大小。,转动惯量:,(质点),(rotationalinertia),(刚体),(质点组),例1:,有两个半径相同,质量相等的细圆环A和B。A环的质量分布均匀,B环的质量分布不均匀。它们对通过环心并与环面垂直的轴的转动惯量分别为JA和JB,则,(A)JAJB;(B)JAJB;(C)JA=JB;(D)不能确定哪个大。,问题:力是改变刚体转动状态的原因吗?,状态改变,结论:力不是改变刚体转动状态的原因。,状态不变,力矩:,(moment),力矩,质量,转动惯量,力,牛顿第二定律,转动定律,问题:力矩是怎样改变刚体转动状态的?,转动定律:,(lawofrotation),转动惯量:(rotationalinertia),竿子长些还是短些较容易保持平衡?,例2:,飞轮的质量为60kg,直径为0.5m,飞轮的质量可看成全部分布在轮外缘上,转速为100r/min,假定闸瓦与飞轮之间的摩擦系数=0.4,现。要求在5s内使其制动,求制动力F。,已知:,练习4:,一飞轮以600r/min的转速旋转,转动惯量为2.5kgm2。现加一恒定的制动力矩使飞轮在1s内停止转动,求这一制动力矩的大小。,动量不能描述刚体转动的状态,角动量:(angularmomentum),角动量:,(angularmomentum),返回,角动量定理,动量守恒定律,角动量守恒定律,动量定理,动能,转动动能,功,力矩的功,动能定理,转动动能定理,应用,应用,角动量守恒定律:(conservationofangularmomentum),观察:身体姿势和她们的旋转速度之间有怎样的联系?,例3:,花样滑冰运动员绕过自身的竖直转轴转动,开始时两臂伸开,转动惯量为J0,角速度为0,然后她将两臂收回,使转动惯量减少为J0/3,这时她转动的角速度变为多少?,角动量守恒,解:,例4:,放在光滑水平面上的细杆质量为M,长为L,可绕通过其中点且与之垂直的轴转动。一质量为m的子弹以速度u射入杆端,速度方向与杆及轴正交。若子弹陷入杆中,求杆的角速度。,解:,例5:,质量为m的小球系于轻绳一端,放在光滑水平面上,绳子穿过平面中一小孔,开始时小球以速率v1作圆周运动,圆的半径为r1,然后向下慢慢地拉绳使其半径变为r2。求:此时小球的角速度。,角动量守恒,解:,太阳系行星轨道:,例6:,一长为L,质量为M的匀质细杆可绕支点O自由转动。当它自由下垂时,一质量为m,速度为v的子弹沿水平方向射入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届山东省菏泽市王浩屯中学英语九年级第一学期期末检测试题含解析
- 2026届贵州省黔东南州剑河县化学九上期中学业质量监测试题含解析
- 河南省郑州市桐柏一中学2026届九上化学期中调研模拟试题含解析
- 大兴安岭市重点中学2026届九年级英语第一学期期末学业水平测试模拟试题含解析
- 2026届陕西省宝鸡市渭滨区九年级英语第一学期期末经典模拟试题含解析
- 2026届山西省临汾市襄汾县九上化学期中达标测试试题含解析
- 信托资金借贷合同范文6篇
- 离婚协议中关于共同财产分割及人寿保险权益保障协议
- 离婚协议书(涉及跨境财产分割与法律适用)
- 猪场租赁合同(含饲料供应与养殖技术支持)
- 2025年骨科颈椎间盘突出症保守治疗要点考试卷答案及解析
- 2025国新控股(上海)有限公司总经理招聘1人笔试参考题库附答案解析
- 2025国资国企穿透式监管白皮书
- 医院查房制度培训课件
- 医学规培读书报告
- 2025年法考主观试题库及答案
- DB31∕T 1543-2025 快速公交(BRT)支持自动驾驶的车路协同架构与技术要求
- 小学数学北师大版四年级上二、线与角-线的认识练习(含答案)
- 2025 骨髓纤维化护理课件
- 中式面点 教学课件
- 涉密岗位岗前培训课件
评论
0/150
提交评论