




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
角平分线的性质,再打开纸片,看看折痕与这个角有何关系?,(对折),情境问题,1、如图,是一个角平分仪,其中AB=AD,BC=DC。将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?,情境问题,A,D,B,C,E,如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?,2、证明:在ACD和ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)ACDACB(SSS)CAD=CAB(全等三角形的对应边相等)AC平分DAB(角平分线的定义),根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器),O,探究新知,N,O,M,C,E,1平分平角AOB2通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?3结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。,实践应用(1),(1)实验:将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,(2)猜想:角的平分线上的点到角的两边的距离相等.,证明:OC平分AOBAOB(已知)1=2(角平分线的定义)PDOA,PEOB(已知)PDO=PEO(垂直的定义)在PDO和PEO中PDO=PEO(已证)1=2(已证)OP=OP(公共边)PDOPEO(AAS)PD=PE(全等三角形的对应边相等),已知:如图,OC平分AOB,点P在OC上,PDOA于点D,PEOB于点E求证:PD=PE,(3)验证猜想,角平分线上的点到角两边的距离相等。,(4)得到角平分线的性质:,利用此性质怎样书写推理过程?,思考:要在区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处米,应建在何处?(比例尺1:20000),公路,铁路,如图:在ABC中,C=90AD是BAC的平分线,DEAB于E,F在AC上,BD=DF;求证:CF=EB,实践应用(2),分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即RtCDFRtEDB.,现已有一个条件BD=DF(斜边相等),还需要我们找什么条件,DC=DE(因为角的平分线的性质)再用HL证明.,试试自己写证明。你一定行!,小结与作业,一、过程小结:情境观察作图应用探究再应用,二、知识小结:本节课学习了那些知识?有哪些运用?你学了吗?做了吗?用了吗?,定理角平分线上的点到这个角的两边距离相等.OC是AOB的平分线,P是OC上任意一点PDO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《幼儿教师招聘》考前冲刺练习试题附参考答案详解(巩固)
- 内蒙古呼伦贝尔农垦集团有限公司招聘笔试题库附答案详解(突破训练)
- 教师招聘之《幼儿教师招聘》能力提升试题打印含答案详解(轻巧夺冠)
- 2025年内蒙古呼伦贝尔农垦牙克石莫拐免渡河农牧场有限公司招聘笔试参考题库及完整答案详解1套
- 2025年禁毒知识知识题及答案
- 教师招聘之《小学教师招聘》题库检测试题打印附答案详解(轻巧夺冠)
- 教师招聘之《幼儿教师招聘》模拟题库附参考答案详解(基础题)
- 人民警察纪律作风方面存在的问题及整改措施
- 2025-2026年教师招聘之《幼儿教师招聘》通关题库附参考答案详解(巩固)
- 教师招聘之《小学教师招聘》考试历年机考真题集含答案详解【基础题】
- 消防消控室设备管理制度
- 项目现场伙食费管理办法
- DGTJ08-86-2022 1:500 1:1000 1:2000数字地形测绘标准
- 施工单位项目部安全管理体系
- 期权考试题库及答案
- DB44∕T 2569-2024 碧道工程规划设计导则
- 心理健康五进活动方案
- 数据中心防雷应急预案范文
- 医疗纠纷预防和处理条例培训课件
- 医院后勤教育培训课件
- 战后日本教育改革与发展进程
评论
0/150
提交评论