原子物理学课后答案.pdf_第1页
原子物理学课后答案.pdf_第2页
原子物理学课后答案.pdf_第3页
原子物理学课后答案.pdf_第4页
原子物理学课后答案.pdf_第5页
已阅读5页,还剩26页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

原子物理学习题解答 第一章 原子的基本状况 1.1 若卢瑟福散射用的粒子是放射性物质镭放射的,其动能为电子 伏特。散射物质是原子序数的金箔。试问散射角所对应的瞄准距离多 大? 解:根据卢瑟福散射公式: 得到: 米 式中是粒子的功能。 1.2已知散射角为的粒子与散射核的最短距离为 ,试问上题粒子与 散射的金原子核之间的最短距离多大? 解:将1.1题中各量代入的表达式,得: 米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质 子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核 (氘核带一个电荷而质量是质子的两倍,是氢的一种同位素的原子核) 代替质子,其与金箔原子核的最小距离多大? 解:当入射粒子与靶核对心碰撞时,散射角为。当入射粒子的动能 全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: ,故有: 米 由上式看出:与入射粒子的质量无关,所以当用相同能量质量和相 同电量得到核代替质子时,其与靶核的作用的最小距离仍为米。 1.4 钋放射的一种粒子的速度为米/秒,正面垂直入射于厚度为米、 密度为的金箔。试求所有散射在的粒子占全部入射粒子数的百分比。已 知金的原子量为。 解:散射角在之间的粒子数与入射到箔上的总粒子数n的比是: 其中单位体积中的金原子数: 而散射角大于的粒子数为: 所以有: 等式右边的积分: 故 即速度为的粒子在金箔上散射,散射角大于以上的粒子数大约是。 1.5 粒子散射实验的数据在散射角很小时与理论值差得较远,时什 么原因? 答:粒子散射的理论值是在“一次散射“的假定下得出的。而粒子通 过金属箔,经过好多原子核的附近,实际上经过多次散射。至于实际观 察到较小的角,那是多次小角散射合成的结果。既然都是小角散射,哪 一个也不能忽略,一次散射的理论就不适用。所以,粒子散射的实验数 据在散射角很小时与理论值差得较远。 1.6 已知粒子质量比电子质量大7300倍。试利用中性粒子碰撞来证 明:粒子散射“受电子的影响是微不足道的”。 证明:设碰撞前、后粒子与电子的速度分别为:。根据动量守恒定 律,得: 由此得: (1) 又根据能量守恒定律,得: (2) 将(1)式代入(2)式,得: 整理,得: 即粒子散射“受电子的影响是微不足道的”。 1.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为的银箔 上,粒子与银箔表面成角。在离L=0.12米处放一窗口面积为的计数器。 测得散射进此窗口的粒子是全部入射粒子的百万分之29。若已知银的原 子量为107.9。试求银的核电荷数Z。 解:设靶厚度为。非垂直入射时引起粒子在靶物质中通过的距离不 再是靶物质的厚度,而是,如图1-1所示。 60 t, t 20 60 图1.1 因为散射到与之间立体 角内的粒子数dn与总入射粒子数n的比为: (1) 而为: (2) 把(2)式代入(1)式,得: (3) 式中立体角元 N为原子密度。为单位面上的原子数,其中是单位面积式上的质量; 是银原子的质量;是银原子的原子量;是阿佛加德罗常数。 将各量代入(3)式,得: 由此,得:Z=47 1.8 设想铅(Z=82)原子的正电荷不是集中在很小的核上,而是均 匀分布在半径约为米的球形原子内,如果有能量为电子伏特的粒子射向 这样一个“原子”,试通过计算论证这样的粒子不可能被具有上述设想结 构的原子产生散射角大于的散射。这个结论与卢瑟福实验结果差的很 远,这说明原子的汤姆逊模型是不能成立的(原子中电子的影响可以忽 略)。 解:设粒子和铅原子对心碰撞,则粒子到达原子边界而不进入原子 内部时的能量有下式决定: 由此可见,具有电子伏特能量的粒子能够很容易的穿过铅原子球。粒子 在到达原子表面和原子内部时,所受原子中正电荷的排斥力不同,它们 分别为:。可见,原子表面处粒子所受的斥力最大,越靠近原子的中心 粒子所受的斥力越小,而且瞄准距离越小,使粒子发生散射最强的垂直 入射方向的分力越小。我们考虑粒子散射最强的情形。设粒子擦原子表 面而过。此时受力为。可以认为粒子只在原子大小的范围内受到原子中 正电荷的作用,即作用距离为原子的直径D。并且在作用范围D之内, 力的方向始终与入射方向垂直,大小不变。这是一种受力最大的情形。 根据上述分析,力的作用时间为t=D/v, 粒子的动能为,因此,所 以, 根据动量定理: 而 所以有: 由此可得: 粒子所受的平行于入射方向的合力近似为0,入射方向上速度不 变。据此,有: 这时 这就是说,按题中假设,能量为1兆电子伏特的 粒子被铅原子散 射,不可能产生散射角的散射。但是在卢瑟福的原子有核模型的情况 下,当粒子无限靠近原子核时,会受到原子核的无限大的排斥力,所以 可以产生的散射,甚至会产生的散射,这与实验相符合。因此,原子的 汤姆逊模型是不成立的。 第二章 原子的能级和辐射 2.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度 和加速度。 解:电子在第一玻尔轨道上即年n=1。根据量子化条件, 可得:频率 速度:米/秒 加速度: 2.2 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激 发电势。 解:电离能为,把氢原子的能级公式代入,得:=13.60电子伏特。 电离电势:伏特 第一激发能:电子伏特 第一激发电势:伏特 2.3 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢 原子向低能基跃迁时,会出现那些波长的光谱线? 解:把氢原子有基态激发到你n=2,3,4等能级上去所需要的能量 是: 其中电子伏特 电子伏特 电子伏特 电子伏特 其中小于12.5电子伏特,大于12.5电子伏特。可见,具有12.5电子伏特 能量的电子不足以把基态氢原子激发到的能级上去,所以只能出现的能 级间的跃迁。跃迁时可能发出的光谱线的波长为: 2.4 试估算一次电离的氦离子、二次电离的锂离子的第一玻尔轨道 半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子 的上述物理量之比值。 解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视 为不动,这样简单些。 a) 氢原子和类氢离子的轨道半径: b) 氢和类氢离子的能量公式: 其中 电离能之比: c) 第一激发能之比: d) 氢原子和类氢离子的广义巴耳末公式: , 其中是里德伯常数。 氢原子赖曼系第一条谱线的波数为: 相应地,对类氢离子有: 因此, 2.5 试问二次电离的锂离子从其第一激发态向基态跃迁时发出的光 子,是否有可能使处于基态的一次电离的氦粒子的电子电离掉? 解:由第一激发态向基态跃迁时发出的光子的能量为: 的电离能量为: 由于, 从而有,所以能将的电子电离掉。 2.6 氢与其同位素氘(质量数为2)混在同一放电管中,摄下两种原 子的光谱线。试问其巴耳末系的第一条()光谱线之间的波长差有多 大?已知氢的里德伯常数,氘的里德伯常数。 解:, , 2.7 已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原 子结构的“正电子素”。试计算“正电子素”由第一激发态向基态跃迁发射 光谱的波长为多少? 解: 2.8 试证明氢原子中的电子从n+1轨道跃迁到n轨道,发射光子的频 率。当n1时光子频率即为电子绕第n玻尔轨道转动的频率。 证明:在氢原子中电子从n+1轨道跃迁到n轨道所发光子的波数为: 频率为: 当n时,有,所以在n1时,氢原子中电子从n+1轨道跃迁到n轨 道所发光子的频率为:。 设电子在第n轨道上的转动频率为,则 因此,在n1时,有 由上可见,当n1时,请原子中电子跃迁所发出的光子的频率即等于电 子绕第n玻尔轨道转动的频率。这说明,在n很大时,玻尔理论过渡到经 典理论,这就是对应原理。 2.9 原子序数Z=3,其光谱的主线系可用下式表示: 。已知锂原子电离成离子需要203.44电子伏特的功。问如把离子电离成 离子,需要多少电子伏特的功? 解:与氢光谱类似,碱金属光谱亦是单电子原子光谱。锂光谱的主 线系是锂原子的价电子由高的p能级向基态跃迁而产生的。一次电离能 对应于主线系的系限能量,所以离子电离成离子时,有 是类氢离子,可用氢原子的能量公式,因此时,电离能为:。 设的电离能为。而需要的总能量是E=203.44电子伏特,所以有 2.10 具有磁矩的原子,在横向均匀磁场和横向非均匀磁场中运动时 有什么不同? 答:设原子的磁矩为,磁场沿Z方向,则原子磁矩在磁场方向的分 量记为,于是具有磁矩的原子在磁场中所受的力为,其中是磁场沿Z方 向的梯度。对均匀磁场,原子在磁场中不受力,原子磁矩绕磁场方向 做拉摩进动,且对磁场的 取向服从空间量子化规则。对于非均磁场, 原子在磁场中除做上述运动外,还受到力的作用,原子射束的路径要发 生偏转。 2.11 史特恩-盖拉赫实验中,处于基态的窄银原子束通过不均匀横 向磁场,磁场的梯度为特斯拉/米,磁极纵向范围=0.04米(见图2-2),从 磁极到屏距离=0.10米,原子的速度米/秒。在屏上两束分开的距离米。 试确定原子磁矩在磁场方向上投影的大小(设磁场边缘的影响可忽略不 计)。 解:银原子在非均匀磁场中受到垂直于入射方向的磁场力作用。其 轨道为抛物线;在区域粒子不受力作惯性运动。经磁场区域后向外射出 时粒子的速度为,出射方向与入射方向间的夹角为。与速度间的关系 为: 粒子经过磁场出射时偏离入射方向的距离S为: (1) 将上式中用已知量表示出来变可以求出 把S代入(1)式中,得: 整理,得: 由此得: 2.12 观察高真空玻璃管中由激发原子束所发光谱线的强度沿原子射 线束的减弱情况,可以测定各激发态的平均寿命。若已知原子束中原子 速度,在沿粒子束方向上相距1.5毫米其共振光谱线强度减少到1/3.32。 试计算这种原子在共振激发态的平均寿命。 解:设沿粒子束上某点A和距这点的距离S=1.5毫米的 B点,共振谱 线强度分别为,并设粒子束在A点的时刻为零时刻,且此时处于激发态 的粒子数为,原子束经过t时间间隔从A到达B点,在B点处于激发态的 粒子数为。 光谱线的强度与处于激发态的原子数和单位时间内的跃迁几率成正 比。设发射共振谱线的跃迁几率为,则有 适当选取单位,使, 并注意到 , 则有: 由此求得: 第三章 量子力学初步 3.1 波长为的X光光子的动量和能量各为多少? 解:根据德布罗意关系式,得: 动量为: 能量为: 。 3.2 经过10000伏特电势差加速的电子束的德布罗意波长 用上述电 压加速的质子束的德布罗意波长是多少? 解:德布罗意波长与加速电压之间有如下关系: 对于电子: 把上述二量及h的值代入波长的表示式,可得: 对于质子,代入波长的表示式,得: 3.3 电子被加速后的速度很大,必须考虑相对论修正。因而原来的 电子德布罗意波长与加速电压的关系式应改为: 其中V是以伏特为单位的电子加速电压。试证明之。 证明:德布罗意波长: 对高速粒子在考虑相对论效应时,其动能K与其动量p之间有如下关系: 而被电压V加速的电子的动能为: 因此有: 一般情况下,等式右边根式中一项的值都是很小的。所以,可以将 上式的根式作泰勒展开。只取前两项,得: 由于上式中,其中V以伏特为单位,代回原式得: 由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应 引起的德布罗意波长变短。 3.4 试证明氢原子稳定轨道上正好能容纳下整数个电子的德布罗意 波波长。上述结果不但适用于圆轨道,同样适用于椭圆轨道,试证明 之。 证明:轨道量子化条件是: 对氢原子圆轨道来说, 所以有: 所以,氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波长。椭 圆轨道的量子化条件是: 其中 而 因此,椭圆轨道也正好包含整数个德布罗意波波长。 3.5 带电粒子在威耳孙云室(一种径迹探测器)中的轨迹是一串小 雾滴,雾滴德线度约为1微米。当观察能量为1000电子伏特的电子径迹 时其动量与精典力学动量的相对偏差不小于多少? 解:由题知,电子动能K=1000电子伏特,米,动量相对偏差为。 根据测不准原理,有,由此得: 经典力学的动量为: 电子横向动量的不准确量与经典力学动量之比如此之小,足见电子的径 迹与直线不会有明显区别。 3.6 证明自由运动的粒子(势能)的能量可以有连续的值。 证明:自由粒子的波函数为: (1) 自由粒子的哈密顿量是: (2) 自由粒子的能量的本征方程为: (3) 把(1)式和(2)式代入(3)式,得: 即: 自由粒子的动量p可以取任意连续值,所以它的能量E也可以有任意 的连续值。 3.7 粒子位于一维对称势场中,势场形式入图3-1,即 (1)试推导粒子在情况下其总能量E满足的关系式。 (2)试利用上述关系式,以图解法证明,粒子的能量只能是一些 不连续的值。 解:为方便起见,将势场划分为三个区域。 (1) 定态振幅方程为 式中是粒子的质量。 区: 波函数处处为有限的解是:。 区: 处处有限的解是: 区: 处处有限的解是: 有上面可以得到: 有连续性条件,得: 解得: 因此得: 这就是总能量所满足的关系式。 (2) 有上式可得: 亦即 令,则上面两方程变为: 另外,注意到还必须满足关系: 所以方程(1)和(2)要分别与方程(3)联立求解。 3.8 有一粒子,其质量为,在一个三维势箱中运动。势箱的长、 宽、高分别为在势箱外,势能;在势箱内,。式计算出粒子可能具有的 能量。 解:势能分布情况,由题意知: 在势箱内波函数满足方程: 解这类问题,通常是运用分离变量法将偏微分方程分成三个常微分方 程。 令 代入(1)式,并将两边同除以,得: 方程左边分解成三个相互独立的部分,它们之和等于一个常数。因此, 每一部分都应等于一个常数。由此,得到三个方程如下: 将上面三个方程中的第一个整数,得: (2) 边界条件: 可见,方程(2)的形式及边界条件与一维箱完全相同,因此,其 解为: 类似地,有 可见,三维势箱中粒子的波函数相当于三个一维箱中粒子的波函数 之积。而粒子的能量相当于三个一维箱中粒子的能量之和。 对于方势箱,,波函数和能量为: 第四章 碱金属原子 4.1 已知原子光谱主线系最长波长,辅线系系限波长。求锂原子第 一激发电势和电离电势。 解:主线系最长波长是电子从第一激发态向基态跃迁产生的。辅线 系系限波长是电子从无穷处向第一激发态跃迁产生的。设第一激发电势 为,电离电势为,则有: 4.2 原子的基态3S。已知其共振线波长为5893,漫线系第一条的波 长为8193,基线系第一条的波长为18459,主线系的系限波长为2413。 试求3S、3P、3D、4F各谱项的项值。 解:将上述波长依次记为 容易看出: 4.3 K原子共振线波长7665,主线系的系限波长为2858。已知K原子 的基态4S。试求4S、4P谱项的量子数修正项值各为多少? 解:由题意知: 由,得: 设,则有 与上类似 4.4 原子的基态项2S。当把原子激发到3P态后,问当3P激发态向低 能级跃迁时可能产生哪些谱线(不考虑精细结构)? 答:由于原子实的极化和轨道贯穿的影响,使碱金属原子中n相同 而l不同的能级有很大差别,即碱金属原子价电子的能量不仅与主量子 数n有关,而且与角量子数l有关,可以记为。理论计算和实验结果都表 明l越小,能量越低于相应的氢原子的能量。当从3P激发态向低能级跃 迁时,考虑到选择定则:,可能产生四条光谱,分别由以下能级跃迁产 生: 4.5 为什么谱项S项的精细结构总是单层结构?试直接从碱金属光 谱双线的规律和从电子自旋与轨道相互作用的物理概念两方面分别说明 之。 答:碱金属光谱线三个线系头四条谱线精细结构的规律性。第二辅 线系每一条谱线的二成分的间隔相等,这必然是由于同一原因。第二辅 线系是诸S能级到最低P能级的跃迁产生的。最低P能级是这线系中诸线 共同有关的,所以如果我们认为P能级是双层的,而S能级是单层的,就 可以得到第二辅线系的每一条谱线都是双线,且波数差是相等的情况。 主线系的每条谱线中二成分的波数差随着波数的增加逐渐减少,足 见不是同一个来源。主线系是诸P能级跃迁到最低S能级所产生的。我们 同样认定S能级是单层的,而推广所有P能级是双层的,且这双层结构的 间隔随主量子数n的增加而逐渐减小。这样的推论完全符合碱金属原子 光谱双线的规律性。因此,肯定S项是单层结构,与实验结果相符合。 碱金属能级的精细结构是由于碱金属原子中电子的轨道磁矩与自旋 磁矩相互作用产生附加能量的结果。S能级的轨道磁矩等于0,不产生附 加能量,只有一个能量值,因而S能级是单层的。 4.6 计算氢原子赖曼系第一条的精细结构分裂的波长差。 解:赖曼系的第一条谱线是n=2的能级跃迁到n=1的能级产生的。根 据选择定则,跃迁只能发生在之间。而S能级是单层的,所以,赖曼系 的第一条谱线之精细结构是由P能级分裂产生的。 氢原子能级的能量值由下式决定: 其中 因此,有: 将以上三个能量值代入的表达式,得: 4.7 原子光谱中得知其3D项的项值,试计算该谱项之精细结构裂 距。 解:已知 4.8 原子在热平衡条件下处在各种不同能量激发态的原子的数目是 按玻尔兹曼分布的,即能量为E的激发态原子数目。其中是能量为的状 态的原子数,是相应能量状态的统计权重,K是玻尔兹曼常数。从高温 铯原子气体光谱中测出其共振光谱双线。试估算此气体的温度。已知相 应能级的统计权重。 解:相应于的能量分别为: 所测得的光谱线的强度正比于该谱线所对应的激发态能级上的粒子 数N,即 由此求得T为: 第五章 多电子原子 5.1 原子的两个电子处在2p3d电子组态。问可能组成哪几种原子 态?用原子态的符号表示之。已知电子间是LS耦合。 解:因为, 所以可以有如下12个组态: 5.2 已知原子的两个电子被分别激发到2p和3d轨道,器所构成的原 子态为,问这两电子的轨道角动量之间的夹角,自旋角动量之间的夹角 分别为多少? 解:(1)已知原子态为,电子组态为2p3d 因此, (2) 而 5.3 锌原子(Z=30)的最外层电子有两个,基态时的组态是4s4s。 当其中有一个被激发,考虑两种情况:(1)那电子被激发到5s态; (2)它被激发到4p态。试求出LS耦合情况下这两种电子组态分别组成 的原子状态。画出相应的能级图。从(1)和(2)情况形成的激发态向 低能级跃迁分别发生几种光谱跃迁? 解:(1)组态为4s5s时 , 根据洪特定则可画出相应的能级图,有选择定则能够判断出能级间可以 发生的5种跃迁: 所以有5条光谱线。 (2)外层两个电子组态为4s4p时: , 根据洪特定则可以画出能级图,根据选择定则可以看出,只能产生一种 跃迁,因此只有一条光谱线。 5.4 试以两个价电子为例说明,不论是LS耦合还是jj耦合都给出同 样数目的可能状态. 证明:(1)LS耦合 5个 L值分别得出5个J值,即5个单重态 代入一个L值便有一个三重态个L值共有乘等于个原子态: 因此,LS耦合时共有个可能的状态 ()jj耦合: 将每个合成J得: 共个状态: 所以,对于相同的组态无论是LS耦合还是jj耦合,都会给出同样数目的 可能状态 5.5 利用LS耦合、泡利原理和洪特定责来确定碳Z=6、氮Z=7的原 子基态。 解:碳原子的两个价电子的组态2p2p,属于同科电子.这两个电子可 能有的值是1,0,-1;可能有,两个电子的主量子数和角量子数相同,根据 泡利原理,它们的其余两个量子数至少要有一个不相同.它们的的可能配 合如下表所示. 为了决定合成的光谱项,最好从的最高数值开始,因为这就等于L出 现的最高数值。现在,得最高数值是2,因此可以得出一个D项。又因为 这个只与相伴发生,因此这光谱项是项。除了以外,也属于这一光谱 项,它们都是。这些谱项在表中以的数字右上角的记号“。”表示。共 有两项是;有三项是。在寻找光谱项的过程中,把它们的哪一项选作项 的分项并不特别重要。类似地可以看出有九个组态属于项,在表中以的 碳原子 1/21/2101 1* 1/21/21-11 0* 1/21/20-11 -1* 1/2-1/2110 20 1/2-1/2100 10 1/2-1/21-10 00 1/2-1/2010 1* 1/2-1/20000 1/2-1/20-10 -1* 1/2-1/2-110 0* 1/2-1/2-100 -10 1/2-1/2-1-10 -20 -1/2-1/210-1 1* -1/2-1/21-1-1 0* -1/2-1/20-1-1 -1* 氮原子 1/21/21/210-13/20 1/21/21/201-13/2 0* 1/21/21/2-1013/20 -1/2-1/2-1/210-13/2 0* -1/2-1/2-1/201-13/20 -1/2-1/2-1/2-1013/2 0* 1/21/2-1/21011/22 1/21/2-1/21001/21 1/21/2-1/210-11/2 0* 1/21/2-1/2-1001/2-1 1/21/2-1/2-10-11/2-2 1/21/2-1/21-111/21 1/21/2-1/21-101/20 1/21/2-1/21-1-11/2-1 数字右上角的记号“*”表示。剩下一个组态,它们只能给出一个项。 因此,碳原子的光谱项是、和,而没有其它的项。 因为在碳原子中项的S为最大,根据同科电子的洪特定则可知,碳 原子的项应最低。碳原子两个价电子皆在p次壳层,p次壳层的满额电子 数是6,因此碳原子的能级是正常次序,是它的基态谱项。 氮原子的三个价电子的组态是,亦属同科电子。它们之间满足泡利 原理的可能配合如下表所示。 表中删节号表示还有其它一些配合,相当于此表下半部给出的间以 及间发生交换。由于电子的全同性,那些配合并不改变原子的状态,即 不产生新的项。 由表容易判断,氮原子只有、和。根据同科电子的洪特定则,断定 氮原子的基态谱项应为。 5.6 已知氦原子的一个电子被激发到2p轨道,而另一个电子还在 1s轨道。试作出能级跃迁图来说明可能出现哪些光谱线跃迁? 解: 对于,单态1P1 对于,三重态3P2,1,0 根据选择定则,可能出现5条谱线,它们分别由下列跃迁产生: 21P111S0;21P121S0 23P023S1;23P123S1;23P223S1 3S1 3P0 3P1 3P2 1S0 3S1 1S0 1s2p 1s2s 1s1s 5.7 原子的能级是单层和三重结构,三重结构中J的的能级高。其 锐线系的三重线的频率,其频率间隔为。试求其频率间隔比值。 解:原子处基态时两个价电子的组态为。的锐线系是电子由激发的 能级向能级跃迁产生的光谱线。与氦的情况类似,对组态可以形成的原 子态,也就是说对L=1可以有4个能级。电子由诸激发能级上跃迁到能级 上则产生锐线系三重线。 根据朗德间隔定则,在多重结构中能级的二相邻间隔同有关的J值 中较大的那一个成正比,因此,所以。 5.8 原子基态的两个价电子都在轨道。若其中一个价电子被激发到 轨道,而其价电子间相互作用属于耦合。问此时原子可能有哪些状态? 解:激发后铅原子的电子组态是。 因此,激发后原子可能有四种状态: 。 5.9 根据LS耦合写出在下列情况下内量子数J的可能值 (1),(2),(3) 解:(1)因为 所以,共2S+1=5个值。 (2)类似地,共有7个值。这里L1时, 则正比于。根据静电学的计算可知,每一对质子的静电斥力能是,R是核 半径。若二质子间的距离为R,它们之间的库仑力为,则有,由此得: 采用SI制,则: 所以:原子核中二质子之间的库仑力为28.18公斤. 10.6 算出的反应能.有关同位素的质量如下:. 解:核反应方程式如下: 反应能是,大于零,是放能反应. 10.7 在第六题的核反应中,如果以1MeV的质子打击,问在垂直于 质子束的方向观测到的能量有多大? 解:根据在核反应中的总质量和联系的总能量守恒,动量守恒,可 知,反应所产生的两个相同的核应沿入射质子的方向对称飞开。如图所 示。 根据动量守恒定律有: 矢量合成的三角形为一个等腰三角形,二底角皆为. 又因为,因而有 已知反应能,由能量守恒定律得:其中 由此可得: 反应所生成的粒子其能量为9.175MeV. 核飞出方向与沿入射质子的方向之间的夹角为: 由于 所以得: (质量之比改为质量数之比) 由此可知,垂直于质子束的方向上观察到的的能量近似就是9.175MeV。 10.8 试计算1克裂变时全部释放的能量约为等于多少煤在空气中燃 烧所放出的热能(煤的燃烧约等于焦耳/千克;焦耳)。 解:裂变过程是被打击的原子核先吸收中子形成复核,然后裂开。 我们知道,在A=236附近,每个核子的平均结合能是7.6MeV;在 A=118附近,每一个核子的平均结合能量是8.5 MeV。所以一个裂为两个 质量相等的原子核并达到稳定态时,总共放出的能量大约是: 而焦耳,所以:。 1克中有N个原子; 它相当的煤质量。 10.9 计算按照(10.8-1)式中前四式的核聚变过程用去1克氘所放 出的能量约等于多少煤在空气中燃烧所放出的热能(煤的燃烧热同上 题)。 解:四个聚变反应式是: 完成此四个核反应共用六个,放出能量43.2 MeV,平均每粒放出 7.2 MeV,单位质量的放出3.6 MeV。1克氘包含N粒,则 所以1克氘放出的能量约等于: 与它相当的煤: 10.10 包围等离子体的磁通量密度B是,算出被围等离子体的压 强。 解:根据公式:得: ,式中是等离子体的压强;B是磁通密度;是真空中的磁导率,等 于,设小到可以忽略,则得到: 因 ,故 第十一章 基本粒子 11.1 算出原子核中两个质子间的重力吸引力和静电推斥力。可以看 出重力吸引力远不足以抵抗静电推斥力。这说明原子核能够稳固地结合 着,必有更强的吸引力对抗库仑力而有余。 解:原子核中两个质子间的静电斥力势能近似为,R是原子核半 径,是电子电荷绝对值。因此,两个质子间的排斥力近似地为。注意到 则 如果把R视作两质子间的距离,则它们间的重力吸引力f可估算如下: 由上面的结果看出,重力吸引力远不能抵消库仑斥力。原子核能稳 固地存在,质子间必有强大的吸引力。这种力就是核力。 11.2 在介子撞击质子的实验中,当介子的实验室能量为200MeV 时,共振态的激发最大,求的质量。 解:介子的动能 介子的静能 介子的总能量 实验室系中介子的动量是 质子的静能 共振粒子的总能量等于介子总能量和质子静能之和: 碰撞前质子静止。根据动量守恒定律, 粒子的动量等于介子的动量. 根据狭义相对论,粒子的质量由下式决定: 与粒子的质量相联系的能量是. 11.3在下列各式中,按照守恒定律来判断,哪些反应属于强相互作 用,哪些是弱相互作用,哪些是不能实现的,并说明理由。 解:(1)左侧重子数是+1,右侧重子数是0,衰变前后重子数不相 等。三种基本相互作用重子数都要守恒。因此,所列衰变实际上是不存 在的。 (2)左侧轻子数是0,右侧轻子数是+1,衰变前后轻子数不相等。 这种衰变方式不能实现,因为三种基本相互作用都要求轻子数守恒。 (3)两侧轻子数都是+1,守恒。但左侧电轻子数是0,右侧电轻子 数是+2,电轻子数不守恒。这种衰变实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论