已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.1,ModeloftheBehaviorofStockPricesChapter10,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.2,CategorizationofStochasticProcesses,Discretetime;discretevariableDiscretetime;continuousvariableContinuoustime;discretevariableContinuoustime;continuousvariable,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.3,ModelingStockPrices,WecanuseanyofthefourtypesofstochasticprocessestomodelstockpricesThecontinuoustime,continuousvariableprocessprovestobethemostusefulforthepurposesofvaluingderivativesecurities,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.4,MarkovProcesses,InaMarkovprocessfuturemovementsinavariabledependonlyonwhereweare,notthehistoryofhowwegotwhereweareWewillassumethatstockpricesfollowMarkovprocesses,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.5,Weak-FormMarketEfficiency,Theassertionisthatitisimpossibletoproduceconsistentlysuperiorreturnswithatradingrulebasedonthepasthistoryofstockprices.Inotherwordstechnicalanalysisdoesnotwork.AMarkovprocessforstockpricesisclearlyconsistentwithweak-formmarketefficiency,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.6,ExampleofaDiscreteTimeContinuousVariableModel,Astockpriceiscurrentlyat$40Attheendof1yearitisconsideredthatitwillhaveaprobabilitydistributionoff(40,10),wheref(m,s)isanormaldistributionwithmeanmandstandarddeviations.,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.7,Questions,Whatistheprobabilitydistributionofthechangeinstockpriceover/during2years?years?years?Dtyears?Takinglimitswehavedefinedacontinuousvariable,continuoustimeprocess,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.8,Variances&StandardDeviations,InMarkovprocesseschangesinsuccessiveperiodsoftimeareindependentThismeansthatvariancesareadditiveStandarddeviationsarenotadditive,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.9,Variances&StandardDeviations(continued),Inourexampleitiscorrecttosaythatthevarianceis100peryear.Itisstrictlyspeakingnotcorrecttosaythatthestandarddeviationis10peryear.(YoucansaythattheSTDis10persquarerootofyears),Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.10,AWienerProcess(Seepages220-1),WeconsideravariablezwhosevaluechangescontinuouslyThechangeinasmallintervaloftimeDtisDzThevariablefollowsaWienerprocessif1.,whereisarandomdrawingfrom(0,1).2.ThevaluesofDzforany2different(non-overlapping)periodsoftimeareindependent,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.11,PropertiesofaWienerProcess,Meanofz(T)z(0)is0Varianceofz(T)z(0)isTStandarddeviationofz(T)z(0)is,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.12,TakingLimits.,Whatdoesanexpressioninvolvingdzanddtmean?ItshouldbeinterpretedasmeaningthatthecorrespondingexpressioninvolvingDzandDtistrueinthelimitasDttendstozeroInthisrespect,stochasticcalculusisanalogoustoordinarycalculus,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.13,GeneralizedWienerProcesses(Seepage221-4),AWienerprocesshasadriftrate(ieaveragechangeperunittime)of0andavariancerateof1InageneralizedWienerprocessthedriftrate&thevarianceratecanbesetequaltoanychosenconstants,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.14,GeneralizedWienerProcesses(continued),ThevariablexfollowsageneralizedWienerprocesswithadriftrateofa&avariancerateofb2ifdx=adt+bdz,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.15,GeneralizedWienerProcesses(continued),MeanchangeinxintimeTisaTVarianceofchangeinxintimeTisb2TStandarddeviationofchangeinxintimeTis,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.16,TheExampleRevisited,Astockpricestartsat40&hasaprobabilitydistributionoff(40,10)attheendoftheyearIfweassumethestochasticprocessisMarkovwithnodriftthentheprocessisdS=10dzIfthestockpricewereexpectedtogrowby$8onaverageduringtheyear,sothattheyear-enddistributionisf(48,10),theprocessisdS=8dt+10dz,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.17,ItoProcess(Seepages224-5),InanItoprocessthedriftrateandthevarianceratearefunctionsoftimedx=a(x,t)dt+b(x,t)dzThediscretetimeequivalentisonlytrueinthelimitasDttendstozero,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.18,WhyaGeneralizedWienerProcessisnotAppropriateforStocks,ForastockpricewecanconjecturethatitsexpectedproportionalchangeinashortperiodoftimeremainsconstantWecanalsoconjecturethatouruncertaintyastothesizeoffuturestockpricemovementsisproportionaltothelevelofthestockprice,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.19,AnItoProcessforStockPrices(Seepages225-6),wheremistheexpectedreturn,sisthevolatility.Thediscretetimeequivalentis,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.20,MonteCarloSimulation,WecansamplerandompathsforthestockpricebysamplingvaluesforeSupposem=0.14,s=0.20,andDt=0.01,then,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.21,MonteCarloSimulationOnePath(continued.SeeTable10.1),Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.22,ItosLemma(Seepages229-231),Ifweknowthestochasticprocessfollowedbyx,ItoslemmatellsusthestochasticprocessfollowedbysomefunctionG(x,t)Sinceaderivativesecurityisafunctionofthepriceoftheunderlying&time,Itoslemmaplaysanimportantpartintheanalysisofderivativesecurities,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.23,TaylorSeriesExpansion,ATaylorsseriesexpansionofG(x,t)gives,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初中三年级生物真题试卷
- 2025年人工智能辅助医疗设备研发可行性研究报告及总结分析
- 2025年智能制造行业技术革新项目可行性研究报告及总结分析
- 2025年精密机械加工产业链整合项目可行性研究报告及总结分析
- 2025年人工智能语音助手市场潜力分析可行性研究报告及总结分析
- 2025年智慧电网系统建设项目可行性研究报告及总结分析
- 2025年干旱地区水利工程改造可行性研究报告及总结分析
- 2025年绿色能源科技研发项目可行性研究报告及总结分析
- 2025年牡蛎苗种供应合同
- 2025年智能新能源解决方案项目可行性研究报告及总结分析
- DB23∕T 2334-2019 装配式混凝土渠道应用技术规范
- 2025年春江苏开放大学机械创新设计060260过程性考核作业123答案
- T/CCS 029-2023综采工作面采煤机惯性导航系统技术规范
- 水利安全风险防控“六项机制”与安全生产培训
- 校园暴力预防培训课件(教师)
- 广东科学科粤版九年级上册化学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)
- 室内卧室门定制合同协议
- 妇科保健知识讲座课件
- YS/T 3045-2022埋管滴淋堆浸提金技术规范
- TCIATCM 096-2023 中医药科学数据汇交系统基本功能规范
- 2019地质灾害拦石墙工程设计规范
评论
0/150
提交评论