




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.1,ModeloftheBehaviorofStockPricesChapter10,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.2,CategorizationofStochasticProcesses,Discretetime;discretevariableDiscretetime;continuousvariableContinuoustime;discretevariableContinuoustime;continuousvariable,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.3,ModelingStockPrices,WecanuseanyofthefourtypesofstochasticprocessestomodelstockpricesThecontinuoustime,continuousvariableprocessprovestobethemostusefulforthepurposesofvaluingderivativesecurities,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.4,MarkovProcesses,InaMarkovprocessfuturemovementsinavariabledependonlyonwhereweare,notthehistoryofhowwegotwhereweareWewillassumethatstockpricesfollowMarkovprocesses,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.5,Weak-FormMarketEfficiency,Theassertionisthatitisimpossibletoproduceconsistentlysuperiorreturnswithatradingrulebasedonthepasthistoryofstockprices.Inotherwordstechnicalanalysisdoesnotwork.AMarkovprocessforstockpricesisclearlyconsistentwithweak-formmarketefficiency,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.6,ExampleofaDiscreteTimeContinuousVariableModel,Astockpriceiscurrentlyat$40Attheendof1yearitisconsideredthatitwillhaveaprobabilitydistributionoff(40,10),wheref(m,s)isanormaldistributionwithmeanmandstandarddeviations.,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.7,Questions,Whatistheprobabilitydistributionofthechangeinstockpriceover/during2years?years?years?Dtyears?Takinglimitswehavedefinedacontinuousvariable,continuoustimeprocess,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.8,Variances&StandardDeviations,InMarkovprocesseschangesinsuccessiveperiodsoftimeareindependentThismeansthatvariancesareadditiveStandarddeviationsarenotadditive,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.9,Variances&StandardDeviations(continued),Inourexampleitiscorrecttosaythatthevarianceis100peryear.Itisstrictlyspeakingnotcorrecttosaythatthestandarddeviationis10peryear.(YoucansaythattheSTDis10persquarerootofyears),Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.10,AWienerProcess(Seepages220-1),WeconsideravariablezwhosevaluechangescontinuouslyThechangeinasmallintervaloftimeDtisDzThevariablefollowsaWienerprocessif1.,whereisarandomdrawingfrom(0,1).2.ThevaluesofDzforany2different(non-overlapping)periodsoftimeareindependent,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.11,PropertiesofaWienerProcess,Meanofz(T)z(0)is0Varianceofz(T)z(0)isTStandarddeviationofz(T)z(0)is,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.12,TakingLimits.,Whatdoesanexpressioninvolvingdzanddtmean?ItshouldbeinterpretedasmeaningthatthecorrespondingexpressioninvolvingDzandDtistrueinthelimitasDttendstozeroInthisrespect,stochasticcalculusisanalogoustoordinarycalculus,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.13,GeneralizedWienerProcesses(Seepage221-4),AWienerprocesshasadriftrate(ieaveragechangeperunittime)of0andavariancerateof1InageneralizedWienerprocessthedriftrate&thevarianceratecanbesetequaltoanychosenconstants,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.14,GeneralizedWienerProcesses(continued),ThevariablexfollowsageneralizedWienerprocesswithadriftrateofa&avariancerateofb2ifdx=adt+bdz,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.15,GeneralizedWienerProcesses(continued),MeanchangeinxintimeTisaTVarianceofchangeinxintimeTisb2TStandarddeviationofchangeinxintimeTis,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.16,TheExampleRevisited,Astockpricestartsat40&hasaprobabilitydistributionoff(40,10)attheendoftheyearIfweassumethestochasticprocessisMarkovwithnodriftthentheprocessisdS=10dzIfthestockpricewereexpectedtogrowby$8onaverageduringtheyear,sothattheyear-enddistributionisf(48,10),theprocessisdS=8dt+10dz,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.17,ItoProcess(Seepages224-5),InanItoprocessthedriftrateandthevarianceratearefunctionsoftimedx=a(x,t)dt+b(x,t)dzThediscretetimeequivalentisonlytrueinthelimitasDttendstozero,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.18,WhyaGeneralizedWienerProcessisnotAppropriateforStocks,ForastockpricewecanconjecturethatitsexpectedproportionalchangeinashortperiodoftimeremainsconstantWecanalsoconjecturethatouruncertaintyastothesizeoffuturestockpricemovementsisproportionaltothelevelofthestockprice,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.19,AnItoProcessforStockPrices(Seepages225-6),wheremistheexpectedreturn,sisthevolatility.Thediscretetimeequivalentis,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.20,MonteCarloSimulation,WecansamplerandompathsforthestockpricebysamplingvaluesforeSupposem=0.14,s=0.20,andDt=0.01,then,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.21,MonteCarloSimulationOnePath(continued.SeeTable10.1),Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.22,ItosLemma(Seepages229-231),Ifweknowthestochasticprocessfollowedbyx,ItoslemmatellsusthestochasticprocessfollowedbysomefunctionG(x,t)Sinceaderivativesecurityisafunctionofthepriceoftheunderlying&time,Itoslemmaplaysanimportantpartintheanalysisofderivativesecurities,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2003,ShanghaiNormalUniversity,10.23,TaylorSeriesExpansion,ATaylorsseriesexpansionofG(x,t)gives,Options,Futures,andOtherDerivatives,4thedition2000byJohnC.HullTangYincai,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年货车座椅行业研究报告及未来发展趋势预测
- 冶金工业技能鉴定考前冲刺练习试题及参考答案详解(B卷)
- 卧式车床主传动系统机械设计方案
- 2025年环保能源行业研究报告及未来发展趋势预测
- 中学英语写作教学标准及课程需求分析
- 2025年极细同轴线行业研究报告及未来发展趋势预测
- 幼儿园冬季保健与健康监测方案
- 2025年施工员预测复习附参考答案详解(培优B卷)
- 郯城县八年级英语期末真题
- 2024粮油食品检验人员模拟试题【培优A卷】附答案详解
- 【数学】角的平分线 课件++2025-2026学年人教版(2024)八年级数学上册
- 阿迪产品知识培训内容课件
- 幼儿园副园长岗位竞聘自荐书模板
- 第1课 独一无二的我教学设计-2025-2026学年小学心理健康苏教版三年级-苏科版
- 老旧小区健身设施增设规划方案
- T∕CEPPEA5004.5-2020核电厂常规岛施工图设计文件内容深度规定第5部分仪表与控制
- 反对邪教主题课件
- 化工阀门管件培训课件
- 新疆吐鲁番地区2025年-2026年小学六年级数学阶段练习(上,下学期)试卷及答案
- TCT.HPV的正确解读课件
- 白酒生产安全员考试题库及答案解析
评论
0/150
提交评论