




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.3角平分线的性质与判定,赵芸,不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?,再打开纸片,看看折痕与这个角有何关系?,(对折),情境问题,1、如图,是一个角平分仪,其中AB=AD,BC=DC。将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?,情境问题,A,D,B,C,E,如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?,2、证明:在ACD和ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)ACDACB(SSS)CAD=CAB(全等三角形的对应边相等)AC平分DAB(角平分线的定义),根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器),O,探究新知,N,O,M,C,E,1平分平角AOB2通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?3结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。,实践应用(1),探究角平分线的性质,(1)实验:将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,(2)猜想:角的平分线上的点到角的两边的距离相等.,题设:一个点在一个角的平分线上,结论:它到角的两边的距离相等,证明:OC平分AOB(已知)1=2(角平分线的定义)PDOA,PEOB(已知)PDO=PEO(垂直的定义)在PDO和PEO中PDO=PEO(已证)1=2(已证)OP=OP(公共边)PDOPEO(AAS)PD=PE(全等三角形的对应边相等),已知:如图,OC平分AOB,点P在OC上,PDOA于点D,PEOB于点E求证:PD=PE,探究角平分线的性质,(3)验证猜想,角平分线上的点到角两边的距离相等。,(4)得到角平分线的性质:,利用此性质怎样书写推理过程?,,,O,A,B,E,D,思考:,如图所示OC是AOB的平分线,P是OC上任意一点,问PE=PD?为什么?,C,P,PD,PE没有垂直OA,OB,它们不是角平分线上任一点这个角两边的距离,所以不一定相等,思考:要在区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处米,应建在何处?(比例尺1:20000),公路,铁路,如图:在ABC中,C=90AD是BAC的平分线,DEAB于E,F在AC上,BD=DF;求证:CF=EB,实践应用(2),分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即RtCDFRtEDB.,现已有一个条件BD=DF(斜边相等),还需要我们找什么条件,DC=DE(因为角的平分线的性质)再用HL证明.,试试自己写证明。你一定行!,驶向胜利的彼岸,已知:如图,在ABC中,AD是它的角平分线,且BD=CD,DEAB,DFAC,垂足分别是E,F.求证:EB=FC.,老师期望:做完题目后,一定要“悟”到点东西,纳入到自己的认知结构中去.,例已知:如图,ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.,证明:过点P作PD、PE、PF分别垂直于AB、BC、CA,垂足为D、E、FBM是ABC的角平分线,点P在BM上(已知)PD=PE(在角平分线上的点到角的两边的距离相等)同理PE=PF.PD=PE=PF.即点P到边AB、BC、CA的距离相等,D,E,F,练习:如图,的的外角的平分线与的外角的平分线相交于点求证:点到三边,所在直线的距离相等,F,G,H,小结与作业,一、过程小结:情境观察作图应用探究再应用,二、知识小结:本节课学习了那些知识?有哪些运用?你学了吗?做了吗?用了吗?,回味无穷,定理角平分线上的点到这个角的两边距离相等.OC是AOB的平分线,P是OC上任意一点,PDOA,PEOB,垂足分别是D,E(已知)PD=PE(角平分线上的点到这个角的两边距离相等).用尺规作角的平分线.,到一个角的两边的距离相等的点,在这个角平分线上。,已知:PDOA,PEOB,垂足分别是D、E,PD=PE.求证:点P在AOB的平分线上。,角平分线的判定定理,P,用符号语言表示为:,PD=PEPDOA,PEOB1=2.,由上面两个定理可知:到角的两边的距离相等的点,都在这个角平分线上;反过来,角平分线上的点到角的两边的距离相等。,角的平分线是到角的两边距离相等的所有点的集合.,练一练,填空:(1).1=2,DCAC,DEAB_(_)(1).DCAC,DEAB,DC=DE_(_),1=2,DC=DE,到一个角的两边的距离相等的点,在这个角平分线上。,在角平分线上的点到角的两边的距离相等,2.已知:如图,C=C=90AC=AC求证(1)ABC=ABC;(2)BC=BC.(要求不用三角形全等的判定),B,例1已知:在等腰RtABC中,ACBCC90,AD平分BAC,DEAB于点E。求证:BDDEAC,变式已知AB15cm,求DBE的周长,E,D,C,B,A,利用结论,解决问题,练一练1、如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应在何处修建?,想一想,在确定度假村的位置时,一定要画出三个角的平分线吗?你是怎样思考的?你是如何证明的?,拓展与延伸,2、直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:()A.一处B.两处C.三处D.四处,分析:由于没有限制在何处选址,故要求的地址共有四处。,拓展与延伸,3、已知:BDAM于点D,CEAN于点E,BD,CE交点F,CF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营销经理发言稿
- 时间控制描述与评价课件
- 班组管理安全培训
- 入场安全教育培训
- 大班颠倒世界课件
- IBM内部咨询培训
- 二零二五年度夫妻离婚协议中共同债务承担与信用修复协议
- 二零二五版电力设施智能化设计及报批合同
- 二零二五年度智能交通系统采购合同及数据共享协议
- 二零二五年度加油站客户关系管理与维护服务合同
- 电缆线路防外破施工方案
- 场地租赁协议场地租赁合同
- 五年级数学(小数乘除法)计算题专项练习及答案汇编
- Module1 Unit I want a hot dog,please(说课稿)-2023-2024学年外研版(三起)英语六年级下册
- DB23/T 3657-2023医养结合机构服务质量评价规范
- 报告审核制度及流程
- 《全球变化》课件
- 山东黄金笔试
- ps教学课件教学课件
- 《铁路轨道维护》课件-钢轨钻孔作业
- 造纸机械用铸铁烘缸定期检验要求
评论
0/150
提交评论