




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
理解教材新知,突破常考题型,应用落实体验,题型一,题型二,第三章,题型三,3.23.2.1,第1部分,跨越高分障碍,随堂即时演练,课时达标检测,32.1直线的点斜式方程,提出问题斜拉桥又称斜张桥,桥身简约刚毅,力感十足若以桥面所在直线为x轴,桥塔所在直线为y轴建立平面直角坐标系,那么斜拉索可看成过桥塔上同一点的直线问题1:已知某一斜拉索过桥塔上一点B,那么该斜拉索位置确定吗?提示:不确定从一点可引出多条斜拉索,问题2:若某条斜拉索过点B(0,b),斜率为k,则该斜拉索所在直线上的点P(x,y)满足什么条件?,问题3:可以写出问题2中的直线方程吗?提示:可以方程为ybkx.,导入新知1直线的点斜式方程(1)定义:如图所示,直线l过定点P(x0,y0),斜率为k,则把方程_叫做直线l的点斜式方程,简称点斜式(2)说明:如图所示,过定点P(x0,y0),倾斜角是90的直线没有点斜式,其方程为xx00,或_.,yy0k(xx0),2直线的斜截式方程(1)定义:如图所示,直线l的斜率为k,且与y轴的交点为(0,b),则方程_叫做直线l的斜截式方程,简称斜截式(2)说明:一条直线与y轴的交点(0,b)的纵坐标b叫做直线在y轴上的_.倾斜角是_的直线没有斜截式方程,ykxb,截距,直角,化解疑难1关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:已知一点P(x0,y0)和斜率k;斜率必须存在只有这两个条件都具备,才可以写出点斜式方程,(3)当k取任意实数时,方程yy0k(xx0)表示恒过定点(x0,y0)的无数条直线2斜截式与一次函数的解析式相同,都是ykxb的形式,但有区别,当k0时,ykxb即为一次函数;当k0时,yb,不是一次函数,一次函数ykxb(k0)必是一条直线的斜截式方程截距不是距离,可正、可负也可为零,直线的点斜式方程,例1(1)经过点(5,2)且平行于y轴的直线方程为_(2)直线yx1绕着其上一点P(3,4)逆时针旋转90后得直线l,则直线l的点斜式方程为_(3)求过点P(1,2)且与直线y2x1平行的直线方程为_,解析(1)直线平行于y轴,直线不存在斜率,方程为x5.(2)直线yx1的斜率k1,所以倾斜角为45.由题意知,直线l的倾斜角为135,所以直线l的斜率ktan1351,又点P(3,4)在直线l上,由点斜式方程知,直线l的方程为y4(x3)(3)由题意知,所求直线的斜率为2,且过点P(1,2),直线方程为y22(x1),即2xy0.答案(1)x5(2)y4(x3)(3)2xy0,类题通法已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用当直线的斜率不存在时,直线方程为xx0.,活学活用1写出下列直线的点斜式方程:(1)经过点A(2,5),斜率是4;(2)经过点B(2,3),倾斜角是45;(3)经过点C(1,1),与x轴平行解:(1)由点斜式方程可知,所求直线的点斜式方程为y54(x2)(2)直线的倾斜角为45,此直线的斜率ktan451.直线的点斜式方程为y3x2.(3)直线与x轴平行,倾斜角为0,斜率k0.直线的点斜式方程为y10(x1),即y1.,直线的斜截式方程,例2(1)倾斜角为150,在y轴上的截距是3的直线的斜截式方程为_(2)已知直线l1的方程为y2x3,l2的方程为y4x2,直线l与l1平行且与l2在y轴上的截距相同,求直线l的方程,(2)由斜截式方程知直线l1的斜率k12,又ll1,l的斜率kk12.由题意知l2在y轴上的截距为2,l在y轴上的截距b2,由斜截式可得直线l的方程为y2x2.,类题通法1斜截式方程的应用前提是直线的斜率存在当b0时,ykx表示过原点的直线;当k0时,yb表示与x轴平行(或重合)的直线2截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数,两直线平行与垂直的应用,例3当a为何值时,(1)两直线yax2与y(a2)x1互相垂直?(2)两直线yx4a与y(a22)x4互相平行?,活学活用3(1)若直线l1:y(2a1)x3与直线l2:y4x3垂直,则a_.(2)若直线l1:yx2a与直线l2:y(a22)x2平行,则a_.,典例已知直线l1:xmy60,l2:(m2)x3y2m0,当l1l2时,求m的值,易错防范1两条直线平行时,斜率存在且相等,截距不相等当两条直线的斜率相等时,也可能平行,也可能重合2解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合,成功破障当a为何值时,直线l1:y2ax2a与直线l2:y(a23)x2平行?解:l1l2,a232a且2a2,解得a3.,随堂即时演练1直线y2x3的斜率和在y轴上的截距分别等于()A2,3B3,3C3,2D2,3答案:D2直线l经过点P(2,3),且倾斜角45,则直线的点斜式方程是()Ay3x2By3x2Cy2x3Dy2x3解析:直线l的斜率ktan451,直线l的方程为y3x2.,答案:A,3过点(2,4),倾斜角为60的直线的点斜式方程是_,4在y轴上的截距为2,且与直线y3x4平行的直线的斜截式方程为_解析:直线y3x4的斜率为3,所求直线与此直线平行,斜率为3,又截距为2,由斜截式方程可得y3x2.答案:y3x2,5(1)求经过点(1,1),且与直线y2x7平行的直线的方程;(2)求经过点(2,2),且与直线y3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版社区老年人营养配餐服务合同范本
- 2025年二手房买卖合同补充条款及房屋交易合同备案服务协议
- 2025版商铺转租租赁物使用限制与责任界定合同
- 2025版科技项目研发成果托管合作协议
- 2025年度自流平地板买卖合同范本
- 2025版虚拟现实产业发展担保合同
- 2025版牲畜养殖企业承包与养殖产业链合作合同
- 2025年互联网企业知识产权抵押贷款合同
- 2025东莞租赁合同范本(含租赁期限延长)
- 2025版新能源发电设备采购与现场安装维护合同
- 2025湖南省低空经济发展集团有限公司招聘12人(第二次)笔试参考题库附带答案详解(10套)
- 2025重庆对外建设集团招聘41人笔试参考题库附带答案详解(10套)
- 2025年中级消控笔试题目及答案
- 《无人机飞行控制技术》全套教学课件
- 石油行业较大危险因素辨识与主要防范措施
- 2024年中国防锈油行业调查报告
- 2025年教育管理领导力案例分析试题及答案
- 办公软件培训课件
- 成人氧气吸入疗法-中华护理学会团体标准
- 2025年职业指导师(中级)考试试卷:职业指导师考试备考策略
- 护士分配科室管理办法
评论
0/150
提交评论