《绝对值》课件2.ppt_第1页
《绝对值》课件2.ppt_第2页
《绝对值》课件2.ppt_第3页
《绝对值》课件2.ppt_第4页
《绝对值》课件2.ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,1.2.4绝对值,一、创设情境,导入新课,它们行驶的路线相同吗?,他们行驶的远近相同吗?,一、创设情境,导入新课,1、它们行驶的远近相同,即它们距离原点的距离相同,由此自然而然地引出课题:绝对值由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolutevalue)这个定义学生接受起来比较容易.2、在与学生一起理解了绝对值的定义后,我再次提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,我采取自问自答形式给出绝对值的记法.记作a,二、强化定义,揭示内涵,为进一步强化概念,在对绝对值有了正确认识的基础上,我让学生写出下列各数的绝对值;6,-8,-3.9,5/2,100,0.,可以请学生起立回答.我就学生的回答情况给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义.,二、强化定义,揭示内涵,在完成上面的练习后,我又提出问题:一个数的绝对值与这个数有什么关系?启发学生可以联系刚才所做的练习,从实际的例子来发现规律,并总结规律.这一环节完全是由学生总结并给出文字表述一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.,三、综合运用,深入理解,学生对绝对值有了一定认识后,我安排了九道不同层次的习题让学生思考.特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情.,三、综合运用,深入理解,(1)下列判断错误的是()A一个正数的绝对值一定是正数B一个负数的绝对值一定是正数C任何数的绝对值一定是正数D任何数的绝对值都不是负数,(2)绝对值是4的实数是()A4B4C-4D2,(3)已知,(1m)2+n+2=0,则m+n的值为()A-1B-3C3D不确定,四、激荡思维,突破难点,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力.这时我开始突破难点,为了易于突破难点,我为学生搭建了一个平台:,a一定表示一个正数吗?通过讨论由师生共同得到:a可以是正数,负数和0.,做一做,写出下列各数的绝对值:,解:,议一议:一个数的绝对值与这个数有什么关系?,例如:|3|3,|7|7,一个正数的绝对值是它本身,例如:|3|3,|2.3|2.3,一个负数的绝对值是它的相反数,0的绝对值是0,即|0|0,而原点到原点的距离是0,因为正数可用a0表示,负数可用a0表示,所以上述三条可表述成:(1)如果a0,那么|a|a(2)如果a0,那么|a|a(3)如果a0,那么|a|0,判断:(1)一个数的绝对值是2,则这数是2.(2)|5|5|.(3)|0.3|0.3|.(4)|3|0.(5)|1.4|0.(6)有理数的绝对值一定是正数.(7)若ab,则|a|b|.(8)若|a|b|,则ab.(9)若|a|a,则a必为负数.(10)互为相反数的两个数的绝对值相等.,课堂小结,1、数轴上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论