




已阅读5页,还剩64页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成才之路数学,路漫漫其修远兮吾将上下而求索,北师大版选修2-1,空间向量与立体几何,第二章,2.5夹角的计算,第二章,1共面直线的夹角当两条直线l1与l2共面时,我们把两条直线交角中,范围在_内的角叫作两直线的夹角2异面直线的夹角当直线l1与l2是异面直线时,在直线l1上任取一点A作ABl2,我们把直线l1与直线AB的夹角叫作异面直线l1和l2的夹角,s1,s2,s1,s2,|coss1,s2|,n1,n2,n1,n2,|cosn1,n2|,|cosn,a|,4由于两条直线所成的角,线面角都是锐角或直角,因此可直接通过绝对值来表达,故可直接求出,而二面角的范围是0,有时比较难判断二面角是锐角还是钝角,因为不能仅仅由法向量夹角余弦的正负来判断,故这是求二面角的难点5异面直线夹角与向量夹角的差异根据异面直线所成角的定义得两条异面直线的夹角为锐角或直角,而向量夹角的范围为0,所以从范围上讲,这两个角并不一致,但却有着相等或互补的关系,所以它们的余弦值相等或互为相反数(向量夹角为0和时除外),1若直线l的方向向量与平面的法向量的夹角等于120,则直线l与平面所成的角等于()A120B60C30D以上均错答案C,异面直线所成的角,总结反思(1)向量法求异面直线所成的角的特点是程序化,即建坐标系,设点,求向量,考查数量积(2)方法二是求两异面直线所成的角的一般方法:通常是平移变异面直线为相交直线,然后解三角形在求两条直线所成的角时,容易忽略了两直线所成角的范围用方向向量所成的角表示异面直线所成角的大小时,若向量夹角为锐角(或直角),则等于异面直线所成的角;若向量夹角为钝角,则它的补角等于异面直线所成的角,求二面角的大小,总结反思本题考查空间中线面关系的判定、空间角的求法在判断空间中直线位置关系时,常用勾股定理逆定理来证明线线垂直;求二面角的平面角是高考重点,可用空间向量来解决还有面积法、异面直线法,作三垂线定理法等要灵活应用,证明解法1:(1)连接OC,因为OAOC,D是AC的中点,所以ACOD又PO底面O,AC底面O,所以ACPO,因为OD,PO是平面POD内的两条相交直线,所以AC平面POD,而AC平面PAC,所以平面POD平面PAC,(2013新课标理,18)如图,三棱柱ABCA1B1C1中,CACB,ABAA1,BAA160.,直线与平面的夹角,(1)证明:ABA1C;(2)若平面ABC平面AA1B1B,ABCB2,求直线A1C与平面BB1C1C所成角的正弦值,解析(1)取AB中点O,连接CO,A1B,A1O,ABAA1,BAA160,BAA1是正三角形,A1OAB,CACB,COAB,COA1OO,AB平面COA1,ABA1C(2)由(1)知OCAB,OA1AB,又平面ABC平面ABB1A1,平面ABC平面ABB1A1AB,OC平面ABB1A1,OCOA1,,如图所示,已知直角梯形ABCD,其中ABBC2AD,AS平面ABCD,ADBC,ABBC,且ASAB求直线SC与底面ABCD的夹角的余弦值,(2014天津理)如图,在四棱锥PABCD中,PA底面ABCD,ADAB,ABDC,ADDCAP2,AB1,点E为棱PC的中点,向量法的综合应用,(1)证明:BEDC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BFAC,求二面角FABP的余弦值,解析解法一:依题意,以点A为原点建立空间直角坐标系(如图),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),由E为棱PC的中点,得E(1,1,1),方法二:(1)证明:如图,取PD中点M,连接EM,AM.,(3)解:如图,在PAC中,过点F作FHPA交AC于点H,因为PA底面ABCD,故FH底面ABCD,从而FHAC,,又BFAC,得AC平面FHB,因此ACBH,在底面ABCD内,可得CH3HA,从而CF3FP,在平面PDC内,作FGDC交PD于点G,于是DG3GP,由于DCAB,故GFAB,所以A,B,F,,G四点共面,由ABPA,ABAD,得AB平面PAD,故ABAG,所以PAG为二面角FABP的平面角,总结反思(1)当空间直角坐标系容易建立(有特殊的位置关系)时,用向量法求解二面角无需作出二面角的平面角只需求出平面的法向量,经过简单的运算即可求出,有时不易判断两法向量的夹角的大小就是二面角的大小(相等或互补),但我们可以根据图形观察得到结论,因为二面角是钝二面角还是锐二面角一般是明显的(2)注意法向量的方向:一进一出,二面角等于法向量的夹角;同进同出,二面角等于法向量夹角的补角,总结反思在解题过程中,犯了两个错误:一个是没有弄清楚线面垂直的判定定理,错误地认为直线与平面内一条直线垂直就线面垂直;一个是混淆了线面角的定义,错误地把直线与平面法向量的夹角当作线面角,正解以D为原点建立如图所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息服务费协议书
- 2025年建筑工程类资料员专业管理实务-专业管理实务参考题库含答案解析
- 历城二中联考数学试卷
- 临淄中考一模数学试卷
- 齐齐哈尔34中数学试卷
- 2025年学历类自考公共课思想道德修养与法律基础-高等数学(工本)参考题库含答案解析
- 《人类对细菌和真菌的利用》(教案及反思)-2024-2025学年鲁科版(五四学制)初中生物七年级下册
- 梦到缺考数学试卷
- 辽宁考研数学试卷
- 2025年学历类自考专业(电子商务)电子商务网站设计原理-电子商务网站设计原理参考题库含答案解析
- 《西方艺术史》课程教学大纲
- 中华人民共和国建筑法
- 新版中国食物成分表
- 民主集中制授课课件
- 跨学科主题学习的设计
- 地面电性源瞬变电磁法地球物理勘查技术规程DB41-T 2106-2021
- 2024年五年级数学上册 二 多边形的面积《不规则图形面积的估算》说课稿 苏教版
- 安全生产标准化基本规范评分表
- 《机械常识(第2版)》中职技工全套教学课件
- 咖啡学概论智慧树知到期末考试答案章节答案2024年华南理工大学
- 工字钢承重表
评论
0/150
提交评论