普林斯顿结构 VS 哈佛结构.doc_第1页
普林斯顿结构 VS 哈佛结构.doc_第2页
普林斯顿结构 VS 哈佛结构.doc_第3页
普林斯顿结构 VS 哈佛结构.doc_第4页
普林斯顿结构 VS 哈佛结构.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

普林斯顿结构 VS 哈佛结构1.冯诺依曼结构 冯诺依曼结构,又称为普林斯顿体系结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。取指令和取操作数都在同一总线上,通过分时复用的方式进行;缺点是在高速运行时,不能达到同时取指令和取操作数,从而形成了传输过程的瓶颈。由于程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置,因此程序指令和数据的宽度相同,如英特尔公司的8086中央处理器的程序指令和数据都是16位宽。 目前使用冯诺依曼结构的CPU和微控制器有很多。其中包括英特尔公司的8086及其他CPU,TI的MSP430处理器,ARM公司的ARM7,MIPS公司的MIPS处理器。2. 哈佛结构 哈佛结构是一种将程序指令存储和数据存储分开的存储器结构,它的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个独立的存储器,每个存储器独立编址、独立访问,目的是为了减轻程序运行时的访存瓶颈。 如图,哈佛结构的计算机由CPU、程序存储器和数据存储器组成,程序存储器和数据存储器采用不同的总线,从而提供了较大的存储器带宽,使数据的移动和交换更加方便,尤其提供了较高的数字信号处理性能。 目前使用哈佛结构的中央处理器和微控制器有很多,除了上面提到的Microchip公司的PIC系列芯片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列和安谋公司的ARM9、ARM10和ARM11。3.总结 随着CPU设计的发展,流水线的增加,指令和数据的互斥读取影响CPU指令执行的scale程度。哈佛结构中数据存储器与程序代码存储器分开,各自有自己的数据总线与地址总线,取操作数与取指令能同时进行。但这是需要CPU提供大量的数据线,因而很少使用哈佛结构作为CPU外部构架来使用。对于CPU内部,通过使用不同的数据和指令cache,可以有效的提高指令执行的效率,因而目前大部分计算机体系都是在CPU内部的使用哈佛结构,在CPU外部使用冯诺依曼结构。哈佛结构编辑词条编辑摘要摘要哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。中央处理器首先到程序指令存储器中读取程序指令内容,解码後得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。目录1处理方式2简介3相关内容4比较编辑本段处理方式哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。中央处理器首先到程序指令存储器中读取程序指令内容,解码後得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。编辑本段简介哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。哈佛结构是一种并行体系结构,它的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个独立的存储器,每个存储器独立编址、独立访问。与两个存储器相对应的是系统的4条总线:程序的数据总线与地址总线,数据的数据总线与地址总线。这种分离的程序总线和数据总线可允许在一个机器周期内同时获得指令字(来自程序存储器)和操作数(来自数据存储器),从而提高了执行速度,提高了数据的吞吐率。又由于程序和数据存储器在两个分开的物理空间中,因此取指和执行能完全重叠。中央处理器首先到程序指令存储器中读取程序指令内容,解码後得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度。哈佛结构的计算机由CPU、程序存储器和数据存储器组成,程序存储器和数据存储器采用不同的总线,从而提供了较大的存储器带宽,使数据的移动和交换更加方便,尤其提供了较高的数字信号处理性能。编辑本段相关内容哈佛结构的微处理器通常具有较高的执行效率。其程序指令和数据指令分开组织和存储的,执行时可以预先读取下一条指令。哈佛结构是指程序和数据空间独立的体系结构, 目的是为了减轻程序运行时的访存瓶颈.例如最常见的卷积运算中, 一条指令同时取两个操作数, 在流水线处理时, 同时还有一个取指操作, 如果程序和数据通过一条总线访问, 取指和取数必会产生冲突, 而这对大运算量的循环的执行效率是很不利的.哈佛结构能基本上解决取指和取数的冲突问题.而对另一个操作数的访问, 就只能采用Enhanced 哈佛结构了, 例如像TI那样,数据区再split, 并多一组总线. 或向AD 那样, 采用指令cache, 指令区可存放一部分数据.编辑本段比较哈佛结构与冯.诺曼结构处理器相比,处理器有两个明显的特点:使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都不允许指令和数据并存;使用独立的两条总线,分别作为CPU与每个存储器之间的专用通信路径,而这两条总线之间毫无关联。改进的哈佛结构,其结构特点为:使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都不允许指令和数据并存,以便实现并行处理;具有一条独立的地址总线和一条独立的数据总线,利用公用地址总线访问两个存储模块(程序存储模块和数据存储模块),公用数据总线则被用来完成程序存储模块或数据存储模块与CPU之间的数据传输;两条总线由程序存储器和数据存储器分时共用。 开放分类:计算机哈佛结构和冯诺伊曼结构哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。中央处理器首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度,如Microchip公司的PIC16芯片的程序指令是14位宽度,而数据是8位宽度。哈佛结构的微处理器通常具有较高的执行效率。其程序指令和数据指令分开组织和存储的,执行时可以预先读取下一条指令。目前使用哈佛结构的中央处理器和微控制器有很多,除了上面提到的Microchip公司的PIC系列芯片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列和安谋公司的ARM9、ARM10和ARM11,51单片机也属于哈佛结构。冯诺伊曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置,因此程序指令和数据的宽度相同,如英特尔公司的8086中央处理器的程序指令和数据都是16位宽。目前使用冯诺伊曼结构的中央处理器和微控制器有很多。除了上面提到的英特尔公司的8086,英特尔公司的其他中央处理器、安谋公司的ARM7、MIPS公司的MIPS处理器也采用了冯诺伊曼结构。哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。哈佛结构是一种并行体系结构,它的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个独立的存储器,每个存储器独立编址、独立访问。与两个存储器相对应的是系统的4条总线:程序的数据总线与地址总线,数据的数据总线与地址总线。这种分离的程序总线和数据总线课允许在一个机器周期内同时获得指令字(来自程序存储器)和操作数(来自数据存储器),从而提高了执行速度,使数据的吞吐率提高了1倍。又由于程序和数据存储器在两个分开的物理空间中,因此取指和执行能完全重叠。中央处理器首先到程序指令存储器中读取程序指令内容,解码後得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度。 哈佛结构的计算机由CPU、程序存储器和数据存储器组成,程序存储器和数据存储器采用不同的总线,从而提供了较大的存储器带宽,使数据的移动和交换更加方便,尤其提供了较高的数字信号处理性能。请问计算机体系结构中的冯.诺依曼体系结构与哈佛体系结构有什么区别?区别是地址空间和数据空间分开与否 冯诺依曼结构数据空间和地址空间不分开 哈佛结构数据空间和地址空间是分开的 一般DSP都是采用改进型哈佛结构,就是分开的数据空间和地址空间都不只是一条,而是有 多条,这根据不同的生产厂商的DSP芯片有所不同。 在对外寻址方面从逻辑上来说也是一样,因为外部引脚的原因,一般来说都是通过相应的 空间选取来实现的。本质上是同样的道理。 DSP肯定是改进型哈佛结构了,我们用起来也感觉很爽。但是光用分开的数据空间和程序空 间来区分这两种结构,我感觉不是很严格。单片机也是分开的数据空间和程序空间,它算 不算哈佛结构?ARM7同样是分开的数据空间和程序空间,它又算不算哈佛结构?ARM核到了 ARM9才采用了真正的哈佛结构。过去知道计算机的体系结构分为哈佛结构与冯.诺依曼结构,但并没有去总结他们有什么区别。今天来看看它们有什么区别。 冯.诺依曼结构,又称为普林斯顿结构。是一种经典的体系结构,有CPU,总线,外部存储器组成。这种体系结构采用程序代码存储器与数据存储器合并在同一存储器里,但程序代码存储器地址与数据存储器地址分别指向不同的物理地址。程序指令宽度与数据宽度一样。数据总线和地址总线共用。 但是随着CPU设计的发展,pipeline的增加,指令和数据的互斥读取很影响CPU指令执行的scale程度。后来,哈佛大学提出一种的新的结构,这种结构采用数据存储器与程序代码存储器分开,各自有自己的数据总线与地址总线。但这是需要CPU提供大量的数据线,因而很少使用哈佛结构作为CPU外部构架来使用。但是对于CPU内部,通过使用不同的数据和指令cache,可以有效的提高指令执行的效率,因而目前大部分计算机体系都是CPU内部的哈弗结构+CPU外部的风诺伊曼的结构 arm7系列的CPU有很多款,其中部分CPU没有内部cache的,比如arm7TDMI,就是纯粹的风诺伊曼结构,其他有内部cache且数据和指令的cache分离的cpu则使用了哈弗结构 许多单片机则采用哈弗结构总线的分类 按照功能划分,大体上可以分为地址总线和数据总线。有的系统中,数据总线和地址总线是复用的,即总线在某些时刻出现的信号表示数据而另一些时刻表示地址;而有的系统是分开的。51系列单片机的地址总线和数据总线是复用的,而一般PC中的总线则是分开的。 系统总线包含有三种不同功能的总线,即数据总线DB(Data Bus)、地址总线AB(Address Bus)和控制总线CB(Control Bus) ”数据总线DB用于传送数据信息。数据总线是双向三态形式的总线,即他既可以把CPU的数据传送到存储器或IO接口等其它部件,也可以将其它部件的数据传送到CPU。数据总线的位数是微型计算机的一个重要指标,通常与微处理的字长相一致。例如Intel 8086微处理器字长16位,其数据总线宽度也是16位。需要指出的是,数据的含义是广义的,它可以是真正的数据,也可以指令代码或状态信息,有时甚至是一个控制信息,因此,在实际工作中,数据总线上传送的并不一定仅仅是真正意义上的数据。“ ”地址总线AB是专门用来传送地址的,由于地址只能从CPU传向外部存储器或IO端口,所以地址总线总是单向三态的,这与数据总线不同。地址总线的位数决定了CPU可直接寻址的内存空间大小,比如8位微机的地址总线为16位,则其最大可寻址空间为21664KB,16位微型机的地址总线为20位,其可寻址空间为2201MB。一般来说,若地址总线为n位,则可寻址空间为2n字节。“ “控制总线CB用来传送控制信号和时序信号。控制信号中,有的是微处理器送往存储器和IO接口电路的,如读写信号,片选信号、中断响应信号等;也有是其它部件反馈给CPU的,比如:中断申请信号、复位信号、总线请求信号、限备就绪信号等。因此,控制总线的传送方向由具体控制信号而定,一般是双向的,控制总线的位数要根据系统的实际控制需要而定。实际上控制总线的具体情况主要取决于CPU。” 按照传输数据的方式划分,可以分为串行总线和并行总线。串行总线中,二进制数据逐位通过一根数据线发送到目的器件;并行总线的数据线通常超过2根。常见的串行总线有SPI、I2C、USB及RS232等。 按照时钟信号是否独立,可以分为同步总线和异步总线。同步总线的时钟信号独立于数据,而异步总线的时钟信号是从数据中提取出来的。SPI、I2C是同步串行总线,RS232采用异步串行总线。PIC单片机、AVR单片机、C51单片机有什么区别?应该说有三个主要特点: (1)总线结构:MCS-51单片机的总线结构是冯-诺依曼型,计算机在同一个存储空间取指令和数据,两者不能同时进行;而PIC单片机的总线结构是哈佛结构,指令和数据空间是完全分开的,一个用于指令,一个用于数据,由于可以对程序和数据同时进行访问,所以提高了数据吞吐率。正因为在PIC单片机中采用了哈佛双总线结构,所以与常见的微控制器不同的一点是:程序和数据总线可以采用不同的宽度。数据总线都是8位的,但指令总线位数分别位12、14、16位。 (2)流水线结构:MCS-51单片机的取指和执行采用单指令流水线结构,即取一条指令,执行完后再取下一条指令;而PIC的取指和执行采用双指令流水线结构,当一条指令被执行时,允许下一条指令同时被取出,这样就实现了单周期指令。 (3)寄存器组:PIC单片机的所有寄存器,包括I/O口,定时器和程序计数器等都采用RAM结构形式,而且都只需要一个指令周期就可以完成访

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论