




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、随机事件及其概率1.(基本概念)随机事件定义(特点):1.试验可以在相同条件下重复进行; 2.每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果; 3.在一次试验之前不能确定哪一个结果会出现。样本空间:随机试验的结果称为基本事件、样本或样本点。样本空间就是随机试验所有可能的结果构成的集合,也就是由所有样本点构成的集合,通 常记为事件,事件发生与否,必然事件,不可能事件事件(定义):在试验中,可能发生也可能不发生的事件称为随机随机事件,简称事件。;提要内容:随机试验中人们特别关注的具有某种共同特征的一些结果,从数学意义上讲,就是样本空间的子集。事件通常用大写英文字母表示。在一次试验中,若试验结果A,则称这次试验中事件A发生了,否则称事件A没有发生。提示:事件是人们根据自己的喜爱定义的,而事件发生与否是与某次试验关联着的。有两个特殊的事件:样本空间本身,每次试验一定发生,称为是必然事件;空集也是的子集,也能称为事件,每次试验一定不会发生,称为不可能事件。事件域:我们希望随机试验所涉及的所有事件作为集合的运算所得到的结果还是事件,这就是所谓运算的封闭性。随机试验的事件构成的集合类如果对最多经“可列无限多”次事件的运算的结果还是事件,则把这个集合类称为事件域。约定随机试验的事件构成事件域,通常记为F。事件的概率定义在事件域F上的集函数P,满足非负性、规范性、和可列可加性。概率统计定义:随机事件A发生的可能性大小,称为事件A的概率。概率公理化定义:设E为随机试验,S为它的样本空间,对于E中的每一事件A,恰对应一个实数,记作P(A),若它满足下列3个条件,则称P(A)为事件A的概率。1. 非负性:0P(A) 1;2.规范性:P(A)=1;2. 可列可加性:设A1,A2,.An.是两两互不相容事件,则有古典概型:设随机试验具有下面两个特性:1.试验的样本空间只包含有限个元素;2.试验中每个基本事件发生的可能性相同。则称这种随机试验为等可能概型或古典概型。2.(基本理论)事件的运算及运算定律事件的三种基本运算:求和:和事件,两个事件A和B中至少有一个发生的事件。记作AB=(x|xA或xB)或A+B求积:积事件:事件A与事件B同时发生的事件, 记作A B=(x|xA且xB)或AB 求逆:对立事件,若AB=S且AB=,则事件A与事件B 互为逆事件,事件A域事件B必有一个发生且只有一个发生。记为事件的三种关系运算:相等:若A 包含: 互斥;事件A和事件B不能同时发生,即AB=。事件的运算定律:交换律:AB=BA,AB=BA 结合律: 分配律: 德摩根律:易证等式概率的运算性质:3.(基本方法):利用袋中摸球模型来为古典概型问题构造场景。球可以有不同标号和不同颜色,摸球可分为有放回摸球和无放回摸球。二、条件概率与事件的独立性1.基本概念条件概率:设A,B是两个事件,且P(A)0,则称P(B丨A)=为在事件A发生的条件下事件B发生的条件概率。同理,当P(B)0时,也可类似地定义在事件B发生的条件下事件A发生的条件概率:P(A丨B)=事件的独立性定义:设A,B为两个事件,如果等式P(AB)=P(A)P(B)成立,则称事件A与B相互独立定理:设事件A与B相互独立,则A与B、A与B、A与B这3对事件也相互独立事件类的独立性(略)2.基本理论两个事件类是独立的可推出他们各自生成的事件域也是相互独立的。由条件概率演绎出乘法公式:对任意两个事件A,B若P(B)0,则有P(AB)=P(B)P(A丨B)类似地,若P(A)0,有P(AB)=P(A)P(B丨A)全概率公式与贝叶斯公式及其推导全概率公式:设事件B1,B2,.,Bn为样本空间S的一个完备事件组,则对任意事件AS,有贝叶斯公式:设事件组B1,B2,.Bn为样本空间的一个完备事件组,则对任意事件A,当P(A)0,P(Bi )0时,有3.基本方法利用全概率公式计算概率利用全概率公式简化贝叶斯公式三、随机变量及其分布1.基本概念随机变量:设随机试验E的样本空间为S=(e),如果对于每个eS,都有一个实数X(e)与它对应,则称S上的实值单值函数X(e)为随机变量,记作X=X(e).离散型随机变量及其分布律离散型随机变量定义:随机变量X的所有可能取值是有限个或可列无限多个时称为X为离散型随机变量两点分布:设随机变量X只可能取0和1两个值,则称其分布律为适合:合格不合格,性别登记,发芽不发芽,下雨不下雨等只有两种结果的现象二项分布:泊松分布:设随机变量X所有可能取的值为0,1,2,且概率分布为其中,0是常数,则称X服从参数为的泊松分布,记作X()适合:电话交换台一定时间内收到的呼叫次数,一本书一页中印刷错误次数, 原子一定时间放射的粒子数,超市一定时间的顾客数。连续型随机变量及其概率密度函数定义:设F(x)是随机变量X的分布函数,如果存在非负函数f(x),使得对于任意实数x均有则称X为连续型随机变量,f(x)为X的概率密度函数或密度函数。均匀分布:设连续型随机变量X的概率密度为 则称随机变量X在区间(a,b)上服从均匀分布,记作XU(a,b)指数分布:若随机变量X具有概率密度 其中,0,为常数,则称X服从参数为的指数分布适合:常用于可靠性统计研究,如电子元件寿命,随机服务系统的服务时间等。正态分布:若连续型随机变量X的概率密度为 其中, 和(0)都是常数,则称X服从参数为和的正态分布或高斯分布2.(基本理论)分布函数的定义及性质定义:设X是一个随机变量,x是任意实数,函数F(x)=P(Xx)(- x+) 称为X的分布函数。性质:分布律的定义及性质定义:设离散型随机变量X所有可能取值为Xk(k=1,2),X取各个可能值的概 律即事件(X=Xk)的概率为则称为离散型随机变量X的概率分布或分布律,可以表示为:性质:密度函数的定义及性质定义:设F(x)是随机变量X的分布函数,如果存在非负函数f(x),使得对于任意实数x均有则称X为连续型随机变量,f(x)为X的概率密度函数或密度函数。性质:证明几何分布和指数分布的无记忆性若X服从参数为的指数分布,则其分布函数为服从指数分布的随机变量X具有一下有趣的性质:对于任意s,t0有这条性质称为“无记忆性”3.(基本方法):利用分布函数,分布律,密度函数计算概率;求随机变量的线性函数的概率分布;利用标准正态分布表计算一般正态分布的概率四、随机变量的数字特征1.基本概念数学期望离散型随机变量的数学期望定义:设离散型随机变量X的概率分布为P(X=xk)=pk (k=1,2,.),称xkpk=x1p1+x2p2+.+xkpk+.为随机变量X的数学期望,简称期望或均值,记作E(X)。连续型随机变量的数学期望定义:设X是连续性随机变量,其密度函数为f(x),若积分 xf(x)dx绝对收敛,则称此积分xf(x)dx的值为X的数学期望,即E(X)= xf(x)dx 随机变量函数的数学期望设g(x)为连续函数,Y=g(X)也是随机变量X的函数(1)若离散型随机变量X的概率分布为P(X=xk)=pk (k=1,2,.) 则随机变量函数Y的数学期望为E(Y)=Eg(X)=g(xk)pk (2)若连续性随机变量X的概率密度为f(x),则随机变量函数Y的数学期望为E(Y)=Eg(X)= g(x)f(x)dx方差定义:设X是一个随机变量,若EX-E(X)2存在,称EX-E(X)2为X的方差,记作D(X),即D(X)= EX-E(X)22.基本理论数学期望的性质1. E(C)=C(C为任意常数)2. E(CX)=CE(X)3. E(X+Y)=E(X)+E(Y)4. 若X,Y相互独立,则E(XY)=E(X)E(Y)方差的性质1. 设C是常数,则D(C)=02. 若C是常数,则D(CX)=C2D(X)3. 设X与Y是两个随机变量,则D(X+Y)=D(X)+D(Y)+2X-E(X)Y-E(Y);若X与Y相互独立,则D(X+Y)=D(X)+D(Y)3.基本方法熟练计算所给出的概率分布的数学期望和方差利用定义计算简单的随机变量函数的数学期望五、多维随机变量1.基本概念多维随机变量:一般来说,设E是一个随机试验,它的样本空间是S=(e),设X1=X1(e),X2=X2(e)Xn=Xn(e)是定义在S上的随机变量,由它们构成的一个n维向量(X1,X2Xn)叫做n维随机向量或n维随机变量二维随机变量联合分布函数、联合分布律、联合密度函数二维随机变量联合分布函数:设(X,Y)是二维随机变量,对于任意实数x和y,二元函数F(x,y)= 称为二维随机变量(X,Y)的分布函数,或者称为随机变量X和Y的联合分布函数。联合分布律:设二维离散型随机变量(X,Y)可能取的值是(Xi,Yi)(i,j=1,2),记P(X=Xi,Y=Yj)为Pij,称为二维离散型随机变量(X,Y)的分布律,或随机变量X和Y的联合分布律 性质:联合密度密度函数:对于二维随机变量(X,Y)的分布函数F(x,y),如果存在非负函数f(x,y)使对于任意的x,y有则称(X,Y)是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y)的概率密度或称为随机变量X和Y的联合概率密度。 性质:二维随机变量边缘分布函数、边缘分布律、边缘密度函数边缘分布函数:边缘分布律:设(X,Y)为二维离散型随机变量,分布律为P(X=Xi,Y=Yj)=Pij,由边缘分布函数得X和Y的边缘分布律分别为通常将X和Y的边缘分布律分别记为Pi.和P.j,于是边缘密度函数:条件分布函数、条件分布律、条件密度函数条件分布率:设(X,Y)为二维离散型随机变量,并且其联合分布律为在已知Y=Yj的条件下,X取值的条件分布是在已知X=Xi的条件下,Y取值的条件分布是条件密度函数:设(X,Y)为连续型随机变量,并且其联合概率密度为f(x,y),若对于固定的y,有fy(y) 0,则称 为在Y=y的条件下X的条件概率密度,记作:协方差与协方差矩阵协方差:设(X,Y)为二维随机变量,若EX-E(X)Y-E(Y)存在,则称为其为随机变量X与Y的协方差,记作Cov(X,Y),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽现代信息工程职业学院《信息技术课堂教学设计与实训》2024-2025学年第一学期期末试卷
- 嘉兴南湖学院《大学生心理健康与生命安全教育》2024-2025学年第一学期期末试卷
- 护理常见高危风险评估
- 宝鸡中北职业学院《爬虫开发与实践》2024-2025学年第一学期期末试卷
- 苏州工业职业技术学院《生物医学分析》2024-2025学年第一学期期末试卷
- 广州体育学院《国际商务管理》2024-2025学年第一学期期末试卷
- 清远职业技术学院《医学细胞生物学与遗传学实验》2024-2025学年第一学期期末试卷
- (2025年标准)城区漏水维修协议书
- 广州城建职业学院《工程问题C++语言求解》2024-2025学年第一学期期末试卷
- 成都艺术职业大学《建筑及规划设计5(上)》2024-2025学年第一学期期末试卷
- 北师大版四年级数学下册第六单元 2栽蒜苗(一) 同步练习(含答案)
- 采伐作业安全课件
- 1-12年级(3500个)核心高频英语单词表
- 2024年统编版七年级道德与法制上册全册教案汇编(含26个教案)
- 装配式建筑预制构件安装施工方案计划
- 2025年胸腔穿刺操作精讲
- 油田水泥封堵施工方案
- 合同制合同范例
- 河道水质监测与保洁方案
- DB35T 1801-2018 配电线路故障指示器通 用技术条件
- 浙江省湖州市2023-2024学年高二下学期6月期末考试历史试题
评论
0/150
提交评论