全控型电力电子器件.doc_第1页
全控型电力电子器件.doc_第2页
全控型电力电子器件.doc_第3页
全控型电力电子器件.doc_第4页
全控型电力电子器件.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四讲 全控型电力电子器件4.1 概述门极可关断晶闸管(Gate-Turn-Off Thyristor GTO)在晶闸管问世后不久出现;20世纪80年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入了一个崭新时代;典型代表门极可关断晶闸管、电力晶体管(Giant TransistorGTR)、电力场效应晶体管(Power MOSFET )、绝缘栅双极晶体管(Insulated-gate Bipolar Transistor IGBT或IGT)。4.2 门极可关断晶闸管(Gate-Turn-Off Thyristor GTO)门极可关断晶闸管是晶闸管的一种派生器件;可以通过在门极施加负的脉冲电流使其关断;GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。4.2.1 GTO的结构和工作原理结构:与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极和门极;和普通晶闸管的不同:GTO是一种多元的功率集成器件,内部包含数十个甚至数百个共阳极的小GTO元,这些GTO元的阴极和门极则在器件内部并联在一起。图1 GTO的内部结构和电气图形符号a) 各单元的阴极、门极间隔排列的图形 b) 并联单元结构断面示意图 c) 电气图形符号工作原理: 与普通晶闸管一样,可以用图2所示的双晶体管模型来分析是器件临界导通的条件。当a1+a21时,两个等效晶体管过饱和而使器件导通;当a1+a2 BUcex BUces BUcer Buceo实际使用时,为确保安全,最高工作电压要比BUceo低得多2)集电极最大允许电流IcM通常规定为hFE下降到规定值的1/21/3时所对应的Ic实际使用时要留有裕量,只能用到IcM的一半或稍多一点3) 集电极最大耗散功率PcM最高工作温度下允许的耗散功率产品说明书中给PcM时同时给出壳温TC,间接表示了最高工作温度 4.3.5 GTR的二次击穿现象与安全工作区一次击穿集电极电压升高至击穿电压时,Ic迅速增大,出现雪崩击穿只要Ic不超过限度,GTR一般不会损坏,工作特性也不变二次击穿一次击穿发生时Ic增大到某个临界点时会突然急剧上升,并伴随电压的陡然下降常常立即导致器件的永久损坏,或者工作特性明显衰变 安全工作区(Safe Operating AreaSOA)最高电压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿临界线限定图1-18 GTR的安全工作区4.4电力场效应晶体管也分为结型和绝缘栅型(类似小功率Field Effect TransistorFET)但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET)简称电力MOSFET(Power MOSFET)结型电力场效应晶体管一般称作静电感应晶体管(Static Induction TransistorSIT)特点用栅极电压来控制漏极电流驱动电路简单,需要的驱动功率小开关速度快,工作频率高热稳定性优于GTR电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置 4.4.1 电力MOSFET的结构和工作原理电力MOSFET的种类按导电沟道可分为 P沟道 和N沟道耗尽型当栅极电压为零时漏源极之间就存在导电沟道增强型对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道电力MOSFET主要是N沟道增强型电力MOSFET的结构图1-19 电力MOSFET的结构和电气图形符号导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管导电机理与小功率MOS管相同,但结构上有较大区别电力MOSFET的多元集成结构国际整流器公司(International Rectifier)的HEXFET采用了六边形单元西门子公司(Siemens)的SIPMOSFET采用了正方形单元摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列 小功率MOS管是横向导电器件电力MOSFET大都采用垂直导电结构,又称为 VMOSFET(Vertical MOSFET)大大提高了 MOSFET器件的耐压和耐电流能力按垂直导电结构的差异,又分为利用V型槽实现垂 直导电的VVMOSFET和具有垂直导电双扩散结构的VDMOSFET(Vertical Double-diffused MOSFET)这里主要以VDMOS器件为例进行讨论电力MOSFET的工作原理截止:漏源极间加正电源,栅源极间电压为零P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过导电:在栅源极间加正电压UGS栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子电子吸引到栅极下面的P区表面当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电4.4.2电力MOSFET的基本特性1) 静态特性 a) 转移特性 b) 输出特性图1-20 电力MOSFET的转移特性和输出特性漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性ID较大时,ID与UGS的关系近似线性,曲线的斜率定义为 跨导GfsMOSFET的漏极伏安特性(输出特性):截止区(对应于GTR的截止区)饱和区(对应于GTR的放大区)非饱和区(对应于GTR的饱和区)电力MOSFET工作在开关状态,即在截止区和非饱和区之间来回转换电力MOSFET漏源极之间有寄生二极管,漏源极间加反向电压时器件导通电力MOSFET的通态电阻具有正温度系数,对器件并联时的均流有利 2) 动态特性图1-21 电力MOSFET的开关过程a) 测试电路 b) 开关过程波形 up脉冲信号源,Rs信号源内阻,RG栅极电阻,RL负载电阻,RF检测漏极电流开通过程(开关过程图) 开通延迟时间td(on) up前沿时刻到uGS=UT并开始出现iD的时刻间的时间段上升时间tr uGS从uT上升到MOSFET进入非饱和区的栅压UGSP的时间段iD稳态值由漏极电源电压UE和漏极负载电阻决定UGSP的大小和iD的稳态值有关UGS达到UGSP后,在up作用下继续升高直至达到稳态,但iD已不变开通时间ton开通延迟时间与上升时间之和关断过程(开关过程图) 关断延迟时间td(off) up下降到零起,Cin通过Rs和RG放电,uGS按指数曲线下降到UGSP时,iD开始减小止的时间段下降时间tf uGS从UGSP继续下降起,iD减小,到uGS20V将导致绝缘层击穿 4) 极间电容 极间电容CGS、CGD和CDS 厂家提供:漏源极短路时的输入电容Ciss、共源极输出电容Coss和反向转移电容CrssCiss= CGS+ CGD (1-14)Crss= CGD (1-15)Coss= CDS+ CGD (1-16)输入电容可近似用Ciss代替这些电容都是非线性的漏源间的耐压、漏极最大允许电流和最大耗散功率决定了电力MOSFET的安全工作区MOSFET正向偏置安全工作区(图中的时间表示脉冲宽度)一般来说,电力MOSFET不存在二次击穿问题,这是它的一大优点实际使用中仍应注意留适当的裕量4.5绝缘栅双极晶体管GTR和GTO的特点双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱 动功率大,驱动电路复杂。MOSFET的优点单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单 两类器件取长补短结合而成的复合器件Bi-MOS器件绝缘栅双极晶体管(Insulated-gate Bipolar Transistor IGBT或IGT)GTR和MOSFET复合,结合二者的优点,具有好的特性1986年投入市场后,取代了GTR和一部分MOSFET的市场,中小功率电力电子设备的主导器件继续提高电压和电流容量,以期再取代GTO的地位4.5.1 IGBT的结构和工作原理IGBT是三端器件:栅极G、集电极C和发射极E图1-22 IGBT的结构、简化等效电路和电气图形符号a) 内部结构断面示意图 b) 简化等效电路 c) 电气图形符号IGBT的结构(显示图)图1-22aN沟道VDMOSFET与GTR组合N沟道IGBT(N-IGBT)IGBT比VDMOSFET多一层P+注入区,形成了一个大面积的P+N结J1使IGBT导通时由P+注入区向N基区发射少子,从而对漂移区电导率进行调制,使得IGBT具有很强的通流能力简化等效电路表明,IGBT是GTR与MOSFET组成的达林顿结构,一个由MOSFET驱动的厚基区PNP晶体管RN为晶体管基区内的调制电阻IGBT的原理驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压uGE决定导通:uGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通导通压降:电导调制效应使电阻RN减小,使通态压降小关断:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断4.5.2 IGBT的基本特性1)IGBT的静态特性图1-23 IGBT的转移特性和输出特性a) 转移特性 b) 输出特性转移特性IC与UGE间的关系,与MOSFET转移特性类似开启电压UGE(th)IGBT能实现电导调制而导通的最低栅射电压UGE(th)随温度升高而略有下降,在+25C时,UGE(th)的值一般为26V输出特性(伏安特性)以UGE为参考变量时,IC与UCE间的关系分为三个区域:正向阻断区、有源区和饱和区。分别与GTR的截止区、放大区和饱和区相对应uCE0时,IGBT为反向阻断工作状态2) IGBT的动态特性图1-24 IGBT的开关过程IGBT的开通过程(开关过程图) 与MOSFET的相似,因为开通过程中IGBT在大部分时间作为MOSFET运行开通延迟时间td(on) 从uGE上升至其幅值10%的时刻,到iC上升至10% ICM 电流上升时间tr iC从10%ICM上升至90%ICM所需时间开通时间ton开通延迟时间与电流上升时间之和uCE的下降过程分为tfv1和tfv2两段。tfv1IGBT中MOSFET单独工作的电压下降过程;tfv2MOSFET和PNP晶体管同时工作的电压下降过程IGBT的关断过程(开关过程图)关断延迟时间td(off) 从uGE后沿下降到其幅值90%的时刻起,到iC下降至90%ICM电流下降时间tfiC从90%ICM下降至10%ICM关断时间toff关断延迟时间与电流下降之和电流下降时间又可分为tfi1和tfi2两段。tfi1IGBT内部的MOSFET的关断过程,iC下降较快;tfi2IGBT内部的PNP晶体管的关断过程,iC下降较慢IGBT中双极型PNP晶体管的存在,虽然带来了电导调制效应的好处,但也引入了少子储存现象,因而IGBT的开关速度低于电力MOSFETIGBT的击穿电压、通态压降和关断时间也是需要折衷的参数4.5.3IGBT的主要参数1) 最大集射极间电压UCES 由内部PNP晶体管的击穿电压确定 2)最大集电极电流 包括额定直流电流IC和1ms脉宽最大电流ICP 3)最大集电极功耗PCM 正常工作温度下允许的最大功耗 IGBT的特性和参数特点1.开关速度高,开关损耗小。在电压1000V以上时,开关损耗只有GTR的1/10,与电力MOSFET相当2.相同电压和电流定额时,安全工作区比GTR大,且具有耐脉冲电流冲击能力3.通态压降比VDMOSFET低,特别是在电流较大的区域4.输入阻抗高,输入特性与MOSFET类似5.与MOSFET和GTR相比,耐压和通流能力还可以进一步提高,同时保持开关频率高的特点4.5.4IGBT的擎住效应和安全工作区图1-22 IGBT的结构、简化等效电路和电气图形符号a) 内部结构断面示意图 b) 简化等效电路 c) 电气图形符号寄生晶闸管由一个N-PN+晶体管和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论