机械毕业设计(论文)-光敏树脂固化成型机起升机构设计(全套图纸).doc_第1页
机械毕业设计(论文)-光敏树脂固化成型机起升机构设计(全套图纸).doc_第2页
机械毕业设计(论文)-光敏树脂固化成型机起升机构设计(全套图纸).doc_第3页
机械毕业设计(论文)-光敏树脂固化成型机起升机构设计(全套图纸).doc_第4页
机械毕业设计(论文)-光敏树脂固化成型机起升机构设计(全套图纸).doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中国地质大学长城学院2012届毕业设计 全套图纸加1538937061 绪论1.1快速成型技术快速成型技术(Rapid Prototyping,RP)是国际上20世纪80年代后期发展起来的一种新型的先进制造技术。由于在其加工过程中,材料处在一个逐点或逐层堆积的过程中,因而该技术属于材料堆积成型的制造技术,也称为“增加”加工法、“生长型制造”,快速成型技术能够根据零件的CAD模型直接成型复杂的零部件或模具,不需要任何工装,突破了传统“去材”加工法或“变形”加工法的许多限制,如:产生切削和工艺废料等材料利用率的缺陷以及由于受刀具或模具形状限制无法制造复杂形状产品制件的不足,是制造技术领域得一次重大突破。在主要的几种快速成型工艺方法中,光固化成型法SLA是最早被提出并商业化应用的。1986年美国的Charles W Hull 博士首次在他的博士论文中提出用激光照射液态光敏树脂,固化分层制作三维物体的快速成型概念,并申请了专利。1988年,美国的3D Systems公司根据该专利商业化了第一台现代快速成型机SLA250,以液态树脂选择性地固化成形零件,开创了快速成型技术的新纪元。经过了近20年的发展,SLA已成为当今研究发展最成熟、应用最为广泛的RP典型技术,在全世界安装的快速成型机中光固化成型系统约占60%。1.2光固化快速成型技术的控制原理及应用快速成型技术是当今世界飞速发展的制造技术之一。这种方法能简捷、全自动地制造出历来各种加工方法难以制作的复杂立体形状,在加工技术领域具有划时代的作用。 光固化快速成型技术(Stereo Lithography Apparatus 简称SLA)是80年代中期开发的先进制造手段,在快速成型方法中使用较为广泛。它的突破性在于将传统的“去除”加工法(由毛坯去除多余部分制成零件)改进为增加加工法(由材料逐层累积形成零件)。SLA以其方便、生产周期短而在铸造、模具与塑料加工行业得到了越来越广泛的应用。 1.2.1 成型原理 光固化快速成型制造技术不同于传统的材料去除制造方法,它的成型原理是:SLA将所设计零件的三维计算图像数据转换成一系列很薄的模型截面数据,然后在快速成型机上,用可控制的紫外线激光束,按计算机切片软件所得到的每层薄片的二维图形轮廓轨迹,对液态光敏树脂进行扫描固化,形成连续的固化点,从而构成模型的一个薄截面轮廓。下一层以同样的方法制造。该工艺从零件的最底薄层截面开始,一次一层连续进行,直到三维立体模型制成。一般每层厚度为0.0760.381mm,最后将制品从树脂液中取出,进行最终的硬化处理,再打光、电镀、喷涂或着色即可。图1所示为SLA控制原理示意图。 图1 SLA 控制原理要实现光固化快速成型,感光树脂的选择也很关键。它必须具有合适的粘度,固化后达到一定的强度,在固化时和固化后要有较小的收缩及扭曲变形等性能。更重要的是,为了高速、精密地制造一个零件,感光树脂必须具有合适的光敏性能,不仅要在较低的光照能量下固化,且树脂的固化深度也应合适。 1.2.2 成型过程及控制 光固化快速成型的过程分为前处理、分层叠加成型及后处理三个阶段,具体步骤如图2所示。 图2 SLA 的工艺过程快速成型机只能接受计算机构造的三维模型,然后才能进行切片处理。因此,应在计算机上采用计算机三维辅助设计软件,根据产品的要求设计三维模型或将已有产品的二维三视图转换成三维模型。 制品越复杂,构制三维模型越困难。用于构造模型的计算机辅助设计软件很关键,要求具有较强的三维造型功能。目前快速成型行业中常用的计算机辅助软件系统主要有Pro/ENGINEER、AutoCAD等。其中,Pro/ENGINEER软件因有较强的实体造型和表面造型功能,可构造非常复杂的模型,所以受到许多用户的好评,但其价格较贵,系统较庞大,使用界面不够友好,新用户使用常需一段熟悉和积累经验的过程。AutoCAD虽价格低,操作简单,但成型复杂制品困难,设计费工费时。近年推出的SolidWorks的价格比较便宜,能基本满足三维造型的要求,且界面友好,容易掌握,因此不少用户对此软件感兴趣。 上述计算机辅助设计软件产生的模型文件输出格式有多种,基中常见的有IGES(International Graphics Exchange Standard)、HPGL(HP Graphics Language)、STEP(Standard for the Exchange of Product)、DXF、STL(Stereo Lithography Interface Specification)等。STL格式是快速成型机常采用的一种模型文件输出格式。 1.2.3 应用 要将一种新产品成功地投入到竞争激烈的市场中需要其产品开发的速度快及生产周期短。只有将快速与柔性制造工艺结合才能达到理想效果。SLA集现代控制技术、CAD/CAM技术、激光技术和新材料科学的成果与一体,突破了传统加工模式,大大缩短了产品的生产周期,提高了产品的市场竞争力。目前光固化快速成型技术的应用主要有: (1) 用SLA制造模具 用SLA工艺快速制成的立体树脂模可以代替蜡模进行结壳,型壳焙烧时去除树脂膜,得到中空型壳,即可浇注出具有高尺寸精度和几何形状、表面光洁度较好的合金铸件或直接用来制注射模的型腔,可以大大缩短制模过程,缩短制品开发周期,降低制造成本。 (2) 对样品形状及尺寸设计进行直观分析 在新产品设计阶段,虽然可以借助设计图纸和计算模拟对产品进行评价,但不直观,特别是形状复杂产品,往往因难于想象其真实形貌而不能作出正确、及时的判断。采用SLA可以快速制造样品,供设计者和用户直观测量,并可迅速反复修改和制造,可大大缩短新产品的设计周期,使设计符合预期的形状和尺寸要求。2 设计方案的确定2.1螺旋传动设计方案2.1.1螺旋传动概述螺旋传动是利用螺杆和螺母的啮合来传递动力和运动的机械传动。主要用于将旋转运动转换成直线运动,将转矩转换成推力。按工作特点,螺旋传动用的螺旋分为传力螺旋、传导螺旋和调整螺旋。(1)传力螺旋:以传递动力为主,它用较小的转矩产生较大的轴向推力,一般为间歇工作,工作速度不高,而且通常要求自锁,例如螺旋压力机和螺旋千斤顶上的螺旋。(2)传导螺旋:以传递运动为主,常要求具有高的运动精度,一般在较长时间内连续工作,工作速度也较高,如机床的进给螺旋(丝杠)。(3)调整螺旋:用于调整并固定零件或部件之间的相对位置,一般不经常转动,要求自锁,有时也要求很高精度,如机器和精密仪表微调机构的螺旋。按螺纹间摩擦性质,螺旋传动可分为滑动螺旋传动和滚动螺旋传动。滑动螺旋传动又可分为普通滑动螺旋传动和静压螺旋传动。1)滑动螺旋传动通常所说的滑动螺旋传动就是普通滑动螺旋传动。滑动螺旋通常采用梯形螺纹和锯齿形螺纹,其中梯形螺纹应用最广,锯齿形螺纹用于单面受力。矩形螺纹由于工艺性较差强度较低等原因应用很少;对于受力不大和精密机构的调整螺旋,有时也采用三角螺纹。一般螺纹升程和摩擦系数都不大,因此虽然轴向力F相当大,而转矩T则相当小。传力螺旋就是利用这种工作原理获得机械增益的。升程越小则机械增益的效果越显著。滑动螺旋传动的效率低,一般为3040%,能够自锁。而且磨损大、寿命短,还可能出现爬行等现象。2)静压螺旋传动 螺纹工作面间形成液体静压油膜润滑的螺旋传动。静压螺旋传动摩擦系数小,传动效率可达99%,无磨损和爬行现象,无反向空程,轴向刚度很高,不自锁,具有传动的可逆性,但螺母结构复杂,而且需要有一套压力稳定、温度恒定和过滤要求高的供油系统。静压螺旋常被用作精密机床进给和分度机构的传导螺旋。这种螺旋采用牙较高的梯形螺纹。在螺母每圈螺纹中径处开有36个间隔均匀的油腔。同一母线上同一侧的油腔连通,用一个节流阀控制。油泵将精滤后的高压油注入油腔,油经过摩擦面间缝隙后再由牙根处回油孔流回油箱。当螺杆未受载荷时,牙两侧的间隙和油压相同。当螺杆受向左的轴向力作用时,螺杆略向左移,当螺杆受径向力作用时,螺杆略向下移。当螺杆受弯矩作用时,螺杆略偏转。由于节流阀的作用,在微量移动后各油腔中油压发生变化,螺杆平衡于某一位置,保持某一油膜厚度。3)滚动螺旋传动用滚动体在螺纹工作面间实现滚动摩擦的螺旋传动,又称滚珠丝杠传动.滚动体通常为滚珠,也有用滚子的。滚动螺旋传动的摩擦系数、效率、磨损、寿命、抗爬行性能、传动精度和轴向刚度等虽比静压螺旋传动稍差,但远比滑动螺旋传动为好。滚动螺旋传动的效率一般在90%以上。它不自锁,具有传动的可逆性;但结构复杂,制造精度要求高,抗冲击性能差。它已广泛地应用于机床、飞机、船舶和汽车等要求高精度或高效率的场合。滚动螺旋传动的结构型式,按滚珠循环方式分外循环和内循环。外循环的导路为一导管,将螺母中几圈滚珠联成一个封闭循环。内循环用反向器,一个螺母上通常有24个反向器,将螺母中滚珠分别联成24个封闭循环,每圈滚珠只在本圈内运动。外循环的螺母加工方便,但径向尺寸较大。为提高传动精度和轴向刚度,除采用滚珠与螺纹选配外,常用各种调整方法以实现预紧。常用的载重螺旋有矩形,梯形和锯齿形等。矩形螺纹传动效率高,但螺纹强度较低,精确制造较困难,对中准确性较差,磨损后无补偿,因此应用受限制,矩形螺纹无标准。梯形螺纹加工容易,强度较大,但效率较低。锯齿形螺纹矩形螺纹效率高,梯形螺纹强度大的特点,一般用于承受单向压力,常用在压力机上。螺杆材料应具有足够的强度和耐磨性,以及良好的加工性能,不经热处理的螺杆一般选用Q275,35,45号钢,重要的经热处理的螺杆可以选用65Mn,40Cr或20C rMnTi钢。精密传动螺杆可用9MnV,CrMn,38CrMoAl钢等。螺母材料除要有足够的强度外,还要求在与螺杆材料配合时摩擦系数小和耐磨。常选用铸造青铜ZQSn6-6-3,ZQSn10-1,速度低,载荷较小时,也可选用高强度铸造铝青铜或铸造黄铜,重载时可用铸铁,耐磨铸铁。尺寸大的螺母可用钢或铸铁做外套,内部浇注青铜。高速螺母可浇注巴氏合金。螺旋传动用矩形,梯形或锯齿形螺纹,其失效形式多为螺纹磨损。而螺旋直径螺母的高度由耐磨性要求决定。传力较大时,应校验螺杆部分或其他危险部位强度,以及螺母,螺杆的螺纹牙的强度。要求自锁时,应检验螺纹副的自锁条件。对于长径比很大的受压螺杆,应检验其稳定性。因此,本设计中螺旋副材料选取钢青铜材料,螺杆选取45号钢。螺纹选用梯型螺纹,右旋单线。2.1.2螺旋传动方案的确定本设计的重点是如何将电机输出的回转运动转换为螺杆的直线运动。这也是整个传动系统设计的关键。根据机械设计等相关参考资料,可得到把回转运动转化为直线运动的四种方式:(1)螺杆转动,螺母移动;(2)螺母转动,螺杆移动;(3)螺母固定,螺杆转、移动;(4)螺杆固定,螺母转、移动;考虑到起升部件与物体接触,而起升部件与物体间不可发生相对运动,而且必须与物体充分接触,因此排除方案(1)、(4),而方案(3)又不方便输入传动方案的设计,因此选择方案(2)作为起升部分的传动方案。2.2减速传动机构设计方案减速传动机构通常有蜗轮蜗杆传动,齿轮传动,带传动,链传动,摩擦轮传动等等。考虑到本设计要求的传动紧凑,传动比较大,因此选用蜗轮蜗杆传动作为本设计的减速传动机构。蜗杆传动用于传递交错轴之间的回转运动。在绝大多数情况下,两轴在空间上是互相垂直的,轴交角为90度。它广泛应用在机床、汽车、仪器、起重运输机械、冶金机械以及其他机械制造部门中,最大传动功率可达到750千瓦,通常用在50千瓦以下;最高滑动速度可达35m/s,通常用在15m/s以下。蜗杆传动的主要优点是结构紧凑,工作平稳,无噪声,冲击振动小以及能得到很大的单级传动比。在传递动力时,传动比一般为8100,常用的为550。在机床工作台中,传动比可达几百,甚至达到一千。这时,需采用导程角很小的单头蜗杆,但传动效率很低,只能用在功率很小的场合。在现代机械制造业中正力求提高蜗杆传动的效率,多头蜗杆的传动效率已经可达到98%。与多级齿轮传动相比,蜗杆传动零件数目少,结构尺寸小,重量轻。缺点是在制造精度和传动比相同的条件下,蜗杆传动的效率比齿轮传动低,同时蜗轮一般需用贵重的减磨材料制造。3 传动系统的设计3.1螺旋传动部分计算3.1.1螺杆直径的计算 式(3.1)表 3-1滑动螺旋副许用比压P 螺杆材料螺母材料许用比压速度范围钢青铜1825低速钢钢7.513低速钢铸铁13182.4m/min钢青铜11183.0m/min取钢青铜螺旋副p=20Mpa,f=0.080.1,最大负载F=25000N,代入式(3.1)得: 根据梯形螺纹国家标准,取螺纹为Tr其基本参数为:螺杆外径:,中径:,螺杆小径:,螺母小径:,螺母大径:,螺距:3.1.2螺纹部分强度计算梯形螺纹牙型角当量摩擦角 将螺纹部分展开,其受力图如图3-1所示, 图3-1作用在螺母上的扭矩螺杆受力如图3-2所示,由图可知,螺杆上与螺母旋合处扭矩最大,且图3-2根据第四强度理论,得:螺杆危险截面的当量应力 表3-2螺杆与螺纹牙强度项目许用应力Mpa螺杆强度 为屈服极限螺纹牙强度材料剪切弯曲钢0.6(11.2)青铜30-404060铸铁404555耐磨铸铁405060蜗杆材料为45号钢,由表3-2可知,它的许用应力为=12072Mpa,满足要求。自锁条件:=12m/s26m/s和持续运转的工况,离心铸造的可得到致密的细晶粒组织,可取大值,沙型铸造的取小值。(2)铸铝青铜 适用于Vs=10m/s的工况,抗胶合能力差,蜗杆硬度应不低于45HRC。(3)铸铝黄铜 点蚀强度高,但磨损性能差,宜用于低滑动速度场合。(4)灰铸铁和球墨铸铁 适用于Vs=2.25转速系数:,弹性系数:根据蜗轮副材料查表3-7得,寿命系数:设机器使用寿命,则寿命系数接触系数:由参考文献1图13.12I线查得接触疲劳极限:查参考文献表3-7得表3-7蜗轮材料 力学性能和设计数据蜗轮材料力学性能设计数据HBMpaMpa%MpaMpaMpam/s铸锡青铜22013080388.31472651151233017090488.314742519026铸锡青铜铸锡青铜240120701298.11523501651227014080798.115243019026铸铝青铜49018010013122.616425040010续表3-7 蜗轮材料力学性能设计数据HBMpaMpa%MpaMpaMpam/s铸铝青铜54020011015122.616426550010铸铝青铜63025015716122.61645502701070030016013122.616466037710铸铝青铜67031016718122.6164250402107504001855122.616426550210注:表中每项第一行为砂型铸造,第二项为离心铸造接触疲劳最小安全系数: 取中心距:代入数据得:, 取标准值蜗杆头数:, 取蜗轮齿数:, 取模数: , 取蜗杆分度圆直径:, 取标准值蜗轮分度圆直径:蜗杆导程角: 蜗轮宽度: , 取蜗杆圆周速度: 蜗杆尺寸:齿顶圆直径 齿根圆直径 蜗杆螺纹长度 , 取蜗轮尺寸:齿顶圆直径齿根圆直径3.3.3 强度校核(1)齿面接触疲劳强度验算许用接触应力:最大接触应力: 满足条件(2)轮齿弯曲疲劳强度验算齿根弯曲疲劳极限弯曲疲劳最小安全系数许用弯曲疲劳应力轮齿最大弯曲应力 满足条件。3.3.4蜗轮蜗杆传动中的作用力分析在蜗杆传动中作用在齿面上的法向压力仍可分解为圆周力、径向力和轴向力。显然,作用于蜗杆上的轴向力等于蜗轮上的圆周力,蜗杆上的圆周力等于蜗轮上的轴向力;蜗杆上的径向力则等于蜗轮上的径向力。这些对应的力的数值相等,方向彼此相反。如图3-5所示。图3-5蜗轮蜗杆受力图蜗轮上作用力 3.3.5实际传动动力参数由于蜗轮蜗杆各基本尺寸需圆整为标准值,传动比最终确定为且蜗轮蜗杆传动效率与估计值略有差别,因此,实际传动、动力参数如下:(1)各轴实际转矩:螺母:Nmm蜗轮:=54059/0.98=55162 Nmm蜗杆: Nmm电机轴: Nmm(2)各轴实际转速蜗杆:r/min蜗轮: r/min螺母: r/min螺杆:m/min(3)电机实际功率KWF,满足条件,因此下端轴承选用51111型。上端轴承受力比较小,因此只需考虑安装问题,结合自制螺母的直径,选用51108型平面推力轴承。(2)蜗杆轴承的选择根据蜗杆的受力图可知,蜗杆牙部分除受径向力外还受轴向力的作用,因此选用轴承时考虑优先选用能同时承受径向力和轴向力的圆锥滚子轴承,型号:30205。4.1.3轴承校验(1)计算圆锥滚子轴承寿命图4-1 蜗杆及轴承受力分析已求得:蜗杆所受径向力,轴向力.查手册30205轴承主要性能参数:Cr=32.2KN,=37KN,=7000r/min,e=0.37,Y=1.6,=0.9,a=12.5所以,附加轴向力; 因为,所以,右端轴承被压紧,则:轴承轴向力, ,取=1,=0;,取=0.4,=0.4cot12.5=1.8考虑平稳运转,冲击载荷系数=1,当量动载荷 因为P1T1(54059)(2)螺杆与联轴器处键的选择参考轮毂及轴径,选择为的键,取键长L=25mm;许用转矩 = T3(4352) 合格4.3联轴器的设计与计算联轴器是用于连接不同机构中两轴,使他们在传递运动和动力过程中一起回转而不脱开。联轴器主要有机械式,液力式和电磁式三种。机械式连轴器是应用最广泛的连轴器,它借助于机械构件相互间的机械作用力来传递转矩。液力式好电磁式是借助于液力和电磁力来传递转矩。联轴器广泛用于船舶,机车,汽车,冶金矿山,石油化工,其重运输,纺织,轻工,农业机械,印刷机械和泵,风机,机床等各类机械设备传动系统中。联轴器的种类很多,按其性能分为:(1) 刚性联轴器1)套筒联轴器2)凸缘联轴器3)夹壳联轴器4)紧箍咒夹壳联轴器(2)挠性联轴器1)无弹性元件挠性联轴器2)非金属弹性元件挠性联轴器3)金属弹性元件挠性联轴器联轴器选择应考虑的问题:在深知所设计产品的工况及技术要求的情况下,选择联轴器应考虑以下问题:(1)所需传递转矩大小、载荷性质及产品对缓冲和减振方面的要求;(2)轴的转速高低和引起的离心力大小;(3)两轴对位移大小(径向位移、轴向位移、角位移);(4)联轴器的制造、安装、维修、成本。在本设计中,选择联轴器的基本决定因素是联轴器所受扭矩的大小。(也即电机轴的扭矩)求得,电机轴的扭矩由于联轴器已标准化,只需根据其所受最大扭矩及轴径大小选择联轴器,因此,综合考虑,选择YL1型凸缘联轴器,其基本参数见表4-2。表4-2YL1型凸缘联轴器基本参数公称扭矩Tn许用转速n r/min轴孔直径mmLmmDmmD1mm螺栓L0mm重量kg数直径 108100193071533M6640.94 图4-2YL1型凸缘联轴器结论本次毕业设计是大学所学知识的全面应用和检测,它使我对产品的先期调研、设计方案的提出、到最终设计的完成有了比较理性的认识,为以后的工作打下了基础,积累了经验。本次设计的起升机构具有结构紧凑、体积小、重量轻、动力源广泛、无噪音、安装方便、使用灵活、功能多、配套形式多、可靠性高、使用寿命长等许多优点。可以单台或组合使用,能大致控制调整提升的高度,可以用电动机或其他动力直接带动,也可以手动。比如说如果用液压马达代替电动机,则可以实现液压的远程控制;也可以用柴油机代替电动机,在没有电的时候使用。在设计的时候,把起升的最大载荷和起升的速度作为设计的原始数据,因此,可以根据使用的场合不同、起升的最大载荷不同设计出相应的产品。通过这次比较完整的起升机构设计,我摆脱了单纯的理论知识学习状态,和实际设计的结合锻炼了我的综合运用所学的专业基础知识,解决实际工程问题的能力,同时也提高我查阅文献资料、设计手册、设计规范以及电脑制图等其他专业能力水平,而且通过对整体的掌控,对局部的取舍,以及对细节的斟酌处理,都使我的能力得到了锻炼,经验得到了丰富,并且意志品质力,抗压能力及耐力也都得到了不同程度的提升。这是我们都希望看到的也正是我们进行毕业设计的目的所在。顺利如期的完成本次毕业设计给了我很大的信心,让我了解专业知识的同时也对本专业的发展前景充满信心,但也存在一定的不足,这新不足在一定程度上限制了我们的创造力。比如我的设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论