(光学专业论文)半导体介质中光学双稳态和四波混频的理论研究.pdf_第1页
(光学专业论文)半导体介质中光学双稳态和四波混频的理论研究.pdf_第2页
(光学专业论文)半导体介质中光学双稳态和四波混频的理论研究.pdf_第3页
(光学专业论文)半导体介质中光学双稳态和四波混频的理论研究.pdf_第4页
(光学专业论文)半导体介质中光学双稳态和四波混频的理论研究.pdf_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

? ? ? ? ? ? ? ? ?1? ? ? ? ? ? ? ? ?2? ? ? ? ? ? ? ?3? ?-? ? ? ? 25%? ? i ? abstract in this thesis we have discussed mainly the nonlinear optical phenomena of optical bistability (ob) and four-wave mixing (fwm) in the semiconductor quantum well (sqw) structures. following the introduction of the growth mechanism of sqw and basic theory of the phenomena of ob and fwm, we present relevant semi-classical theory and study ob and fwm in sqw theoretically using this semi-classical approximation. the main work of our paper consists of the following sections: (1) we investigate ob based on intersubband transitions in an asymmetric sqw struc- ture that has equidistant transitions between three subbands. the system is simultaneously coupled by a fundamental fi eld and its second harmonic. the second harmonic fi eld acts as a control fi eld and signifi cantly infl uences the ob. in addition, the two-color coherent control of ob by the relative phase of the fundamental and the second harmonic fi elds is shown. the infl uence of the electronic cooperation parameter on the ob behavior is also discussed. (2) the behavior of ob in a triple sqw structure with tunnelling-induced interference is studied, where the system is driven coherently by the probe laser inside the unidirectional ring cavity. the results show that the properties of ob can be controlled effi ciently by tun- ing the parameters of the system such as laser frequency and tunnelling-induced frequency splitting. (3) we propose an effi cient fwm scheme in an asymmetric semiconductor dou- ble quantum-well (sdqw) structure based on intersubband transitions, and obtain the corresponding explicit analytical expressions for the input probe and generated fwm pulsed fi elds by use of the coupled schr oinger-maxwell approach. under the resonant and phase-matched conditions, the fwm effi ciency versus several variables is also discussed in details and the maximum fwm effi ciency of the system under study is greater than 25%. key words:optical bistability; four-wave mixing; semiconductor quantum well; intersub- band transitions ii ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1? 1.1? ?1,2? ? ?electromagnetically induced transparency?eit? ? ?coherent population trapping?cpt? ? ? ? ?3? ? ? ?46?7,8? ?9?2003? xiao?7? ? ? ?eit? ? ? ?8?eit? ? ?2004? ?5,6? ? ? ? ? ? ? ? ? ? ?1019? ? ?1014,2031? ?20,22,23? ? ?21?12,2528?2931? ? ?10ps1? ? ? ? ? ? ? ? ? ? ? ?stark? dynes?paspalakis? ?24? 1 ? ? 1-1?m1-m3? ?ld1?ld2?pb1-pb4 ?fr? ? apd? sas?7 ? ? ? ?gao? ?31? ? ? ? ? ? ? ? ? ? ? ? ? ?-? ? 2 ? (1) ? ? ? ?1969?32?1976? ?33? ? ? ? ? ?34,35?7,8? ?36? ?37?3840? ? ?40?20022003? ?xiao? ?7?5cm?67.5?37cm? ? ? ? ? m2?pbs? ?1-1? ? ? ?1976?gibbs?na?f-p? ? ?gaas?insb?linbo3? ?gaalas/gaas?joshi?xiao? ? ? ? ?16?li? ?18? ? ?fano-? ?li?19? ? ? ? ? ? ? ? ? ? ? ? ?gaas?insb? ?,? ? ?10?2?1?2? ? ? ?1012? ? ? (2) ? ?four-wave mixing? fwm? 3 ? ? 1-2 ?pr?bs?nd? ? & 60?43 ? ? ? ? ? ? ? ?41? ? ? ? ? ? ?franken?42? ? ? ? ? ? ? ? ? ? ? ?feinberg?jain?1979?43,44? ? ?1-2? ? ? 100% ? ?2001?1?deng45? ? ? ? ?kerr? ? ? ? 2003?8? wu? ?46?eit? ?eit? ? ? ? ? ?2004?9? ? ? ? 4 ? x y z 1 d 3 d 2 d 1 d x e g e ( )a( )b ? 1-3 (a)? (b)?48 ? ?47? ? ? (3) ? ? ? ? ? ? ? ? ? ? ? ? 6 50nm? ?1-3?a? ? ? ? ? ?mbe?lpe?vpe? ? ?gaas/(al,ga)as? ? ? ?gaas? ?(al,ga)as? ?gaas?(al,ga)as? ? ?1-3 ?b? ? ? ?-? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 5 ? ? 1-4 ?49 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?48? 1.2? 1.2.1? ? ?1-4?49? ?ii? ? ?it? ?ii?oa? ?ii?ib? ?i 0 c? ?it ? ?ii?ce? ? 6 ? l 1 ? e 2 e , tt ie, ii ie 1 m 2 m ? 1-5 ?-? 1 m l 2 m 4 m r=1 3 m r=1 i p e t p e 0 ? 1-6 ? ?ce?ob? ?ec? ?ib? ?i 0 b? ?ecd? ? ?ia?i 0 a?ii? ?ao?abcd? ? ? ? ? ? ? ? ? ? ? ? ? ?-? ? ?1-5? 1-6? ? ?50 en+1(0) = te i+ f(en(0) (?1.1) ?z = 0?(n + 1) ?m1? ?n?f(e)? 7 ? ? ? f(en(n) = releikl 0 en(0)(?1.2) ?l 0 ?l? ? ?r = 1 t ? ? ? ? ?en+1(0) = en(0) = e0? ?1.1? e0= te i+ f(e0) (?1.3) ?1.2? e0= te i 1 rel+ikl 0 (?1.4) ? et= te(l) =te 0e(+ik)l (?1.5) ? et ei = teik(ll 0) elikl 0 r (?1.6) ?-? ? et ei = telikl 0 e2l2ikl 0 r (?1.7) ? ? ? ? ?1?k ? eikl 0 ? ? ? ?l 1?el 1 + l? ?1.6? et ei = t t + l (?1.8) ? ? = 0/(1 + i)?i = it/t ? ?1.8? ei t= et t(1 + 0l/t 1 + it/t )(?1.9) 8 ? ?1.9? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?2? ?re() = 0? ? ? = ilkl 0 (i= im()? it= |et|2? it= |et|2? ? ? ?n(i) = n0+ n2i ? ? = 0+ 2it? ?| 1? ?1.6? ii= it1 + r(0+ 2it)2/t 2 (?1.10) ? ?n?i ? ?i ?l? ? i ? ? ? 1.2.2? ? ?p (2) nl?e ? ?(2)= 0? ?p (3) nl = 0(3)e3? ?48? ? ? ? ?1? 2?3? e(t)= 1 2e1(1)e i1t + c.c. + 1 2e2(2)e i2t + c.c. + 1 2e3(3)e i3t + c.c. = x q=1,2,3 1 2e2(q)e iqt (?1.11) ? q= q?e(q) = e(q)? ? p (3) nl(t) = 1 80 (3) x q,r,l=1,2,3 e(q)e(r)e(l)expi(q+ r+ l)t(?1.12) 9 ? ?216(= 63)?1, ,31 ,21 2, ,1 2 3? ? ?p (3) nl(4 = 2+ 3 1)? ? p (3) nl(4 = 2+ 3 1) = 6 80 (3)e(2)e(3)e(1) (?1.13) ? e(4)e(2)e(3)e(1)? ? ? ? ? ?48? ? ? ? ? ? 2e 0 2e t2 = 0 2pnl t2 (?1.14) ? ? e(t) = x q=1,4 1 2eq(q)exp(iqt) (?1.15) ? q= q? e(q) = e(q)? ? p (3) nl(t) = 0 (3)e3(t) = 1 23 0(3) x p,q,r=1,2,3,4 e(p)e(q)e(r)expi(p+q+r)t (?1.16) ? 512(= 83) ? ? ?1.15? ? ?1.16? ? ?1.14? ? ? ? 2+ k2 qe(q) = 0 2 qp (3) (nl)(q),(q = 1,2,3,4) (?1.17) ?p (3) (nl)(q)?q? ?1+ 4= 2+ 3? ?1?2?3?4= 2+ 3 1?4? ?p (3) (nl)(4)? p (3) (nl)(4 = 2+ 3 1) = 1 40 (3)6e2e3e 1 + 6(|e1|2+ |e2|2+ |e3|2+ |e4|2/2)e4 (?1.18) ?1.17? ? 2+k2 4e4 = 1 400 2 4 (3)6e2e3e 1+6(|e1| 2 +|e2|2+|e3|2+|e4|2/2)e4 (?1.19) ?1?2?3? ?1.18?1.19? ? ? 10 ? ?1+4= 2+3? ? ? ? ? ?e2e3e 1?1? 2?3?4? ? ? ? ? ? ? ?3|ej|2? ? ?6 p 3|ej| 2 ? 1.3? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?-? ? ? ?25%? ? ? ? 11 ? 2? 2.1? ? ?51?schr odinger picture? ? ?heisenberg picture?interaction picture? ? ? ? ? ? ? ? ? ? ? ?1? ? i t|si = h|si |s(t)i = eih(t)t/|s(0)i tas = 0 i ts = hi,s hasi = hs|as|si = tr(sas)(?2.1) ? ?2? ? |h(t)i = |h(0)i = |s(0)i i tah(t) = ah(t),h(t) ah= eih(t)t/aseih(t)t/ hahi = hh(t)|ah|h(t)i = hs|as|si = tr(s(0)ah)(?2.2) ?3? h = ha+ hb hi= eihat/hbeihat/ i t|ii = hi|ii |ii = eihat/|si ai= eihat/aseihat/ i tai(t) = ai(t),hi(t) 12 ? e g a ? ? ? 2-1 ? i= eihat/seihat/ i ti = hi,i haii = hi|ai|ii = hs|as|si = tr(sas)(?2.3) ? ? ? ? ? 2.2? ? ? ? ? ? ?2-1? ? ? ? ? ? ? ? ? ? ?52? 2.2.1? ?2-1? |ei?|gi? ? ? ?a? ?e?g? ?a= e g? h = ha+ hl+ hi ? ha? hl? hi? ? ? ? 13 ? ? ? h = ha+ hi(?2.4) ? ?|ei?|gi? ?|ei? |gi? ? ha= p2 2m + e|eihe| + g|gihg|(?2.5) ?m? p ? ? ? ? ? ? hi= e r e( r0,t) = d e( r0,t)(?2.6) d ? ? e( r0,t)? e( r0,t) = e0cos(t) ?e0?2.6? ?hi?|ei? |gi? hi=(|eihe| + |gihg|)d e0(|eihe| + |gihg|)cos(t) =(deg|eihg| + dge|gihe|)e0cos(t) =(0|eihg| + 0|gihe|)cos(t) (?2.7) ?0= dege0 ?rabi?deg= he|d |gi = d ge = |deg|ei? ? = 0?cos(t) = 1 2(e it + eit)? ? hi= 0 2 (eit|eihg| + eit|gihe|) + (eit|eihg| + eit|gihe|)(?2.8) ? ?2.8? ?eit|eihg|?eit|gihe|? ? ? hi= (eit|eihg| + eit|gihe|)(?2.9) ? = 0 2 ?rabi? ? ?2.5?2.9? ? h=ha+ hi 14 ? = p2 2m + e|eihe| + g|gihg| (eit|eihg| + eit|gihe|)(?2.10) ? ? rabi? ? ? ? h = e|eihe| + g|gihg| (eit|eihg| + eit|gihe|)(?2.11) ? ? ? ? ? ? ?|gihg| = 1 |eihe|?2.11? ? hs= h0+ hi= a|eihe| (eit|eihg| + eit|gihe|)(?2.12) ?a= e g? ?g= eg= 0? ?1?h0= a|eihe|? ?2.3? ? ? ? hi i =eih0t/hieih0t/ =eih0t/(eit|eihg| + eit|gihe|)eih0t/ =(ei(a)t|eihg| + ei(a)t|gihe|) =(eit|eihg| + eit|gihe|)(?2.13) ? = a ? ? ?2?h0= |eihe|? ? ? hi i =eih0t/hieih0t/ =eih0t/|eihe| (eit|eihg| + eit|gihe|)eih0t/ =|eihe| (ei()t|eihg| + ei()t|gihe|) =|eihe| (|eihg| + |gihe|)(?2.14) ? ? ? ? ? ? ? ? ? 2.2.2? ? ? ? 15 ? ? ? ?1? ? ? |(t)i = ce(t)|ei + cg(t)|gi(?2.15) ? ce(t)?cg(t)?|ei?|gi? ? |ei = 1 0 ! |gi = 0 1 ! ? ?t? ? ? |(t)i = ce(t) cg(t) ! (?2.16) ? = |(t)ih(t)|? (t) = ce(t)ce(t)ce(t)cg(t) c e(t)cg(t) cg(t)cg(t) ! = eeeg gegg ! (?2.17) ? ?ee?gg? ? ? ? ? ?t? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?eg?ge? ? ?2.14?2.15?i|(t)i t = hi|(t)i? ? ce(t) t =ice(t) + icg(t) cg(t) t =ice(t)(?2.18) ?2? ? ?ii t = hi,i? ?ij? ij= i k(hikkj ikhkj) (i,j = e,g)(?2.19) ? ee=i(eg ge) gg=i(eg ge) eg=ieg i(ee gg) ge=ige+ i(ee gg)(?2.20) 16 ? ?2.20? ee+ gg= 0? ?|ei? ?|gi? ? ?eg= ge? ?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论