(岩土工程专业论文)模糊数学在复合地基中的应用研究.pdf_第1页
(岩土工程专业论文)模糊数学在复合地基中的应用研究.pdf_第2页
(岩土工程专业论文)模糊数学在复合地基中的应用研究.pdf_第3页
(岩土工程专业论文)模糊数学在复合地基中的应用研究.pdf_第4页
(岩土工程专业论文)模糊数学在复合地基中的应用研究.pdf_第5页
已阅读5页,还剩53页未读 继续免费阅读

(岩土工程专业论文)模糊数学在复合地基中的应用研究.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华中科技大学硕士学位论文 _ - l - _ _ _ i l _ - _ - - l _ _ l _ - - _ l _ _ i i i l l - _ - _ - - - _ l _ _ _ i - - _ - - l 摘要 ( 进入6 0 年代以来,模糊数学理论逐渐被引入岩土工程领域。当前复 合地基的设计理论尚在发展中,为促进模糊数学理论在复合地基设计中 的应用,对复合地基丞錾应和复合地基的稳定性进行模糊可靠度的分析 研究是非常有必要的。l 一一 本文应用模糊数学中的隶属度概念对软土的划分作了论述。提出了 软土划分和分类的具体方法。复合地基的稳定在一定程度上可视为一模 糊事件,由于影响复合地基承载力的因素常常表现出不同程度的随机变 异性,复合地基承载力也具有随机变异性。本文建立了复合地基的极限 状态方程,进而利用概率理论与模糊数学建立复合地基失稳的模糊概率 公式,并对参数c ,以,与模糊失效概率的关系做了分析。 用模糊数学综合评判法分析复合地基基础的稳定性,考虑到影响复 合地基基础的稳定性作用的因素很多,性质不同,分属不同的类别和层 次,本文用二级评判模型,通过构造隶属函数,充分考虑其中的不确定 性因素,边界界限的不分明性,亦此亦彼性和中间过渡状态。通过不同 的权数分配,区分各个因素对复合地基的稳定性影响度的不同,使评判 结果更精确合理。文中最后通过典型实例,用本文介绍的模型和方法进 行了评判,其结果与实际情况相符。表明本文提出的理论模型和分析方 法是可行的,可以用来处理对复合地基的稳定性的评估问题,为进一步 工作提供参考。 关键词:模糊数等复合地基r 面至五 j 蠹西壁垂委堑蔓墅匿厂 华中科技大学硕士学位论文 a b s t r a c t r e l i a b i l i t yt h e o r yh a sb e e ni m p o r t e di n t og e o t e c h n i c a le n g i n e e r i n g f i e l df r o m1 9 6 0 s t h et h e o r yo fc o m p o s i t ef o u n d a t i o ni si na d v a n c e ,i t i sv e r ys i g n i f i c a n tt ou s et h ef u z z yr e l i a b i l j t yt oa n a l y z et h el o a d b e a r i n gc a p a c i t yo fc o m p o s i t ef o u n d a t i o na n d t h er e l i a b i l i t yo fc o m p o s i t e f o u n d a t i o nf o rf a c i l i t a t i n gt h ea p p l i c a t i o no fr e l i a b i l i t yt h e o r yi nt h e d e s i g n a t i o no fc o m p o s i t ef o u n d a t i o n t h i st h e s i su s e dt h ef u z z ym a t h e m a t i c sm e t h o dt oc l a s s i f yt h es o f t s o i l t h ed e t a i l e dm e t h o d sh a v e b e e np u tf o r w a r d s i n e ea 1 1k i n d so f f a c t o r s ,w h i c ha f f e c t l o a d b e a r i n gc a p a c i t yo fc o m p o s i t ef o u n d a t i o n , a l w a y sa p p e a rv a r i a b i l i t y i nr a n d o m t h e nd o e st h el o a d b e a r i n g c a p a c i t y o fc o m p o s i t ef o u n d a t i o n ,c o m p o s i t ef o u n d a t i o ns t a b i l i t yc a nb er e g a r d e da s a na m b i g u o u se v e n ta ts o m ed e g r e e i nt h i sp a p e r ,t h el i m ite q u a t j o no f c o m p o s i t e f o u n d a t i o n s t a b i l i t y i se s t a b l i s h e d :t h ef o r m u l ao f f u z z y p r o b a b i l i t yo fc o m p o s i t e f o u n d a t i o n l o s i n g i t s s t a b i l i t y h a sb e e n e s t a b l i s h e db ym e a n so fp r o b a b i l i t yt h e o r ya n df u z z ym a t h e m a t i c s t h e r e l a t i o n s h i p o fp a r a m e t e r c ,a n da m b i g u o u sp r o b a b i1 it y h a v eb e e n a n a ly z e d t h i st h e s i sf o c u s e so nt h ea p p l i c a t i o no f f u z z yc o m p r e h e n s i v e e v a l u a t i o nm e t h o dt oa n a l y z et h e s t a b i l i t yo fc o m p o s i t ef o u n d a t i o n b e c a u s et h e r ea r em a n yf a c t o r st oi n f l u e n c et h es t a b i l i t yo fc o m p o s i t e f o u n d a t i o n ,a n dd i f f e r e n tp r o p e r t i e sb e l o n gt od i f f e r e n tg r a d e sa n dk i n d s , t h ep r e s e n tt h e s l sa d o p t e dt h e t w o s t a g ee v a l u a t i o nm o d e l b yu s i n g s u b o r d i n a t i o nf u n c t i o n s 。m o r ec o n s j d e r a t i o nh a sb e e n碍j y e nt ot h e u n c e r t a i nf a c t o ro ft h ec o m p o s it ef o u n d a t i o n u n c l e a rb o u n d a r i e sa n ( i m i d d l es t a t e s t h r o u g hd i f f e r e n tf a c t o r s ,t h es t a b i l i t yo fe o m p o s i t e f o u n d a t i o nc a nb ed i f f e r e n t i a t e d a c c o r d i n g l y ,t h er e s u l t so fe v a l u a t i o n c a nb em o r ea c c u r a t e f i n a l1 y 。at y p i c a lp r a c t i c a le x a m p eh a sb e e na n n ly z e d b y t h e s u g g e s t e dm o d e l a n dm e t h o d i t sr e s u l t s c o n f o r m e dt o t h ea c t u a l s i t u a t i o n s ,s h o wt h a tt h et h e o r e t i c a lm o d e la n d t h ea r i a y t i c a im e t h o dis p r a c t i c a b l e i tc a nb eu s e df o re v a l u a t i n gt h es t a b i l i t yo fc o m p o s i t e f o u n d a t i o n i na d d i t i o n i ti sv a l u a b l ef o rt h er e l a t e dw o r k k e y w o r d s :f u z z ym a t h e m a t i c s c o m p o s i t ef o u n d a t i o nr e l i a b i l i t y f u z z yc o m p r e h e n s i v ee v a l u a t i o nm e t h o d 华中科技大学硕士学位论文 绪论 1 1 引言 1 9 6 5 年美国控制论专家扎德教授提出模糊集合【1 1 ,并引入“隶属函数”这一概念 来描述差异的中间过渡。这是精确性对模糊性的种逼近,而首次成功地运用了数学 的方法描述模糊概念。自此以后模糊数学即有了巨大的发展,建立在集合论基础上的 模糊数学的基本理论不断地得到深化和完善。由于模糊数学打破了形而上学的束缚, 既认识到现象的“非此即彼”的确定形态,也认识到了现象的“办此亦彼”的非确定 性的模糊性形态。因而其适应面较传统数学更为广泛,其基本思想已渗透到经典数学 的许多领域。模糊数学在聚类分析、模糊识别、控制论、信息检索、语苦学、逻辑学、 心理学、人工智能、医疗诊断、管理科学和工程学等方面的应用1 1 ,鼹示了强人的巾 命力。它已成为研究自然科学和社会科学中某些模糊现象的有力1 二具。 客观越界有许多非确定的现象,或具有随机性或具有模糊性,或兼而有之。对 于这类现象,将根据它们的随机性或模糊性分别采用随机数学或模糊数学方法处理。 而对于模糊随机现象,则以模糊概率进行更全面合理。 关于随机现象的概率、统计分析起步相对较早,目前已逐步纳于某些工程标准和 二 程规范中,有些工程规范已丌始推荐对结构的安全分析采用可靠度的概念和方法。 模糊数学方法自1 9 6 5 年提出后,它在理论上和应用上也都有了较大的发展。在岩:k ;t l 程中也获得了一定的应用,已经展现了广阔的前景。近些年来,我国的岩土工程界廊 用模糊数学方法研究一些具有模糊性非确定性的岩土工程问题,也有了良好的丌端。 不论是在工程地质、岩体力学、土力学与地基以及勘探等方面都有应用。其类容包括 数据处理、数学模型的建立、地基与士构物稳定性的评价、危险性预测和预报以及1 : 程方案选择等。 综上所述,我国的岩土工程界在应用模糊数学这一新兴的数学学科方而取得了 定的成果,但远未涉及到它所包括的全部范畴和相应的深度。应用的方法多集于模糊 聚类分析、模糊优化,模糊决策、模糊综合评判等,而其他方面,如模糊概率分析、 华中科技大学硕士学位论文 模糊规划等方面还很少涉及,我们今后的努力方向就是要更多的结合工程中的实际问 题,选择相应的方法丌展多方面的研究。 1 2 复合地基的概念及分类 1 2 1 复合地基的概念 任何建筑物的荷载最终将通过地基传递到地基土上,使地基产生应力和变形。若 天然地基不能满足结构物对地基的要求时,则需进行人工处理后再建造基础,以保证 结构物的安全与正常使用,这种地基称之为人工地基,在欧美国家称之为“地基处理” 或“地基加固”。 地基处理的方法很多,如排水固结法、挤密法、置换拌入法、灌浆法、加筋法及 冷热处理法等。归纳起- 束,大致可分为三类:均质地基、多层地基及复合地基l z i 。 1 均质地基。均质地基是指天然地基在人工处理过程中加固区土体的性质得到全 面的改善,加固区土体的物理力学性质基本上是相同的。例如:采用排水固结法形成 的人工地基,加固区各点孔隙比减小、抗剪强度提高、压缩性减小。均质人:- l :地基承 载力和变形的计算方法与均质天然地基的计算方法相同。 2 多层地基。在多层地基中,最简单最常遇见的是双层地綦。双层地基有人1 i 形 成的,也有天然形成的。天然双层地基,如均质软粘土地基和硬壳层组成的双层地基 等。人工双层地基是由人工处理后的复合加固区与下卧层两层土性相差较大的土体组 成。采用表层压实法或挚层法处理形成的人工地基一般属于双层地基。 3 复合地基。复合地基是指天然地基在处理过程中部分土体得到增强、或被置换、 或在天然地基中设置加筋材料,形成由两种模量不同的材料( 天然地基j i j 和增强体) 组成的人工地基,在相对刚性基础下协调变形,并通过地基土和增强体共同作用,提高 地基承载力,减少建筑物沉降,以满足建筑物对地基的要求。 1 2 2 复合地基的特点 从复合地基的受力特性来看,至少有两种以j - 的不同材料共同承扭赫载。所坍材 料的不同主要是指其力学性质的不同,如密度、强度、变形模量、泊松比等。从宏规 上看复合地基均是两相体,由两种材料复合而成:将天然地基土视作是一种均质各向 华中科技大学硕士学位论文 同性材料,丽忽略其本身的成层、非质值等因素:同样,对于嵌于土中的各种材料, 也不考虑它们是否由多种材料复合而成,而简单看成一种均质的各向同性的材料。由 于加固土的力学性质明显优于地基土本身,故而称这些材料为增强体。复合地基犹似 钢筋混凝土,其中的增强体如混凝土中的钢筋,其实质是增强体和地基土共同作用, 因此,复合地基有两个基本特点: 1 复合地基是由基体和增强体两部分组成,是非均质和各向异性的; 2 在荷载作用下,增强体和基体共同作用、承担上部荷载。 前一特征使复合地基有别于天然地基,后一特征使复合地基区别于桩基础。 复合地基与天然地基同属地基范畴,两者之间有内在联系,但又有本质的区别。桩体 复合地基与桩基础都是采用以桩的形式处理地基,故两者有其相似之处,但复合地基 属于地基范畴,而桩基属于基础范畴,所以两者又有本质的区别。 1 2 3 复合地基的分类 复合地基是由基体和增强体组成的人工地基,根据增强体的设胃方向,复合地旗 可分为水平向增强体复合地基和竖向增强体复合地基两大类。水平向增强体复合地基 简称水平复合地基,主要包括由各种加筋材料,如土工聚合物、会属材料格栅等形成 的各种加筋复合土结构。竖向增强体复合地基通常称为桩体复合地基。 在桩体复合地基中,桩体作用是主要的,按传统的分类方法,复合地基依掘桩的 类型进行分类:碎石桩复合地基、砂桩复合地基、深层搅拌桩复合地基、旋喷桩复合 地基、石灰桩复合地基、土桩复合地基、c f g 桩复合地基、地基等。按桩体的刚度, 将桩体复合地基分为散体材料桩复合地基、柔性桩复合地基和剐性桩复合地蕊i 类。 1 散体材料桩复合地基:如碎石桩、砂桩复合地基等,其桩体是由散体材料组成 的。格来说,敖体材料桩不是桩,因为散体材料桩需要桩周土的网箍作用4 能维持 桩体形状,仅仅依靠自身不能形成桩体。在荷载作用下,散体材料桩发生鼓胀变形, 依靠桩周土提供的侧压力维持桩体平衡,来承受上部荷载的作用。 2 柔性桩复合地基:如深层搅拌桩复合地基、喷桩复合地基等。柔性桩是相对j : 刚性桩而言的,桩体刚度小、强度低者称为柔性桩。柔性桩和刚性桩压缩性相差较大, 因此,两者的荷载传递特性有较大的差别。 华中科技大学硕士学位论文 3 刚性桩复合地基:如钢筋混凝土复合地基、c f g 桩复合地基、粉煤次混凝土复 合地基等,桩体刚度大、强度高。 1 3 岩土工程非确定性理论研究的特点 六十年代以来,岩土工程的非确定性研究已受到许多学者的重视,有些国家已经 丌始应用于工程设计【3 州。目i ; ,可靠性研究在结构工程巾达到了实用阶段,概率极限 状态的设计方法已得到了广泛的应用。地基基础和上部结构有一些明显的差别。这些 差别构成了地基基础非确定性问题的特点。地基设计与上部结构不同,它有以下四个 特点: 1 岩土材料性质方面的特点 岩土材料是自然历史的产物,无法人为控制其组成成分和工程性质,它的性质与 位置有关,反映了地质成因与年代的影响。具有地域性特点,不同地方的岩土具有不 同的特点。因此地基设计所依据的参数通常由勘察提供,只有初步设计或不重要的i l : 程才可采用规范推荐的经验值。 岩土材料的性质十分复杂而多变,即使同一地点的同一一i 二层,其变异性远比般 人工材料( 如塑料) 或人工加工材料( 如钢筋、混凝土等) 大,其变异性可达到0 3 o 5 以上,从而使岩土工程的精度更依赖于土性参数统计分析的精度。 岩土工程材料的特性与位簧有关,具有场地效应,并有自相关的特性。即使对i j : 同一地点的同一土层,由于形成一定厚度的土层的时间很长,成土环境并不完全一样。 两点位置越靠近,成土环境变化越小,两点的土性关系越密切;随着两点之帕j 的距离 的增大,这种相关性逐渐减弱,直至互不相关。这科t 自相关特性在人工材料i | i 并不4 定具有。 2 失效验算原则方面 地基是一个半无限体,与通常出板梁柱组成的结构体系不同,地基内各点应力与 应变的相互影晌极为复杂。无论足承载力或是变形闯题,求解的都足椎个地慕的综合 反映,而不是像结构构件那样只验算几个截面,使问题复杂化【7 l 。 3 工程规模方面 华中科技大学硕士学位论文 岩土工程的尺寸和规模都比结构工程巨大。假如在不均匀的地基上仅建造一个尺 寸很小的结构物,则将地基看作是相对均匀的或许问题不大,但若是涉及较大范围的 土层,则问题的性质就不同了,这时就不能将地基概率特性看作是各处相同的了。这 引起了两个方面的问题:一是如何选用合适的估计理论,使室内小尺寸的试件较好地 代表实际工程的性状:二是由于地基的范围大,所以地基的性状不仅是一点的土性, 更重要的是一定范围内岩土材料的平均特性。因此,在岩土工程的可靠度分析中。需 要研究土性的均值及方差。 3 极限状态含义方面 地基问题极限状态的含义与结构工程中的含义也不相同,前者不仅包括了整体失 稳,而且包含了由于土层的位移或局部破坏使上部结构破坏引起的承载力极限状态。 也就是说,岩土体的变形也可以是上部结构发生极限状态的原因之一。因此,对于结 构上的“正常使用极限状态”在地基中如何体现,还需要进步研究。 整个岩土工程的问题分析过程,包括场地勘测、试验,并利用试验参数进行没计 或预测。这些过程都包含了不确定性因素。场地的勘测精度( 地质分层的准确性) 、取 样时土的扰动、试验条件和场地的偏差、测试方法的差- 异、勘探和取样数量的一i 足、 荷载模型及计算模型等都引起不确定性。另外,岩土工程的施工过程中的不确定性的 影响非常大,并且这种影响因素非常不确定,难以定量描述,这种影响因素可以用模 糊可靠度分析来处理。 包承纲( 1 9 9 2 ) 嘲提出可靠度分析要始终贯彻于工程的各个环节,而不是仅仅体现 在设计计算公式中,其含义可以理解为“广义的可靠度分析”,而把可靠度计算理解为 狭义的可靠度分析。但就目i j 的状况来说,j 下处在确定论的安全系数法向不确定性分 析方法的转变时期,工程的各个环节仍大多沿用各自的传统方法。我们目前要做的足 如何把各个环节的不确定性在设计计算及预测中体现出来,然后再过渡到“,“义的可 靠度分析”阶段。虽然目前的水平有限,很多的不确定性因素只能作近似处理或忽略 不计,但即使是这样,也已经比传统的设计方法前进了人步。 华中科技大学硕士学位论文 1 4 模糊数学理论在土木工程中的应用 自此1 9 6 5 年美国加利福尼甄大学扎德教授第一次提出了模糊集的概念,模糊数学 在土木工程方面得到了广泛的应用。f r e u d e n t h a l ( 1 9 4 6 ) 9 1 开创了结构安全度的研究工 作,周期前苏联的尔然尼钦( 1 9 4 7 ) 提出了用一次二阶矩理论的方法来估计结构的失 效概率“”。c o r n e l l ( 1 9 6 9 ) 提出用可靠度指标b 作为衡量结构安全可靠度的一种统一 的数量指标。1 9 7 6 年国际结构安全度联合委员会( j c s s ) 采用了r a c k w it z f ie s s ) o r 等人提出的通过“当量正态化”1 的方法以考虑随机变量实际分椰的二:阶矩模式。至 此,二阶矩模式结构可靠度设计计算方法丌始进入实用阶段。 在国内,何广讷认为安全系数法分析海堤的稳定性不甚合理“”,用概率方法分析 了某实际海堤的地震稳定性,给出了该海堤稳定程度的定量评价。汪培庄以模糊映射 为基础给出了模糊集基数的定义“”,不但得到了有关基数的大部分结论,而且有其自 身的特有性质;特别对于连续统假设这一世界难题可能有新的启示。冯德益把模糊聚 类分析、模糊地震活动平静异常议别、模糊分维、b 值谱分析等方法应用于新西兰南、 北两区的地震危险性估计当中。结果表明,这5 科- 方法j l :此处均可得) u y i 效的心h ”。 杨建贵将模糊随机可靠度理论应用于边坡的稳定分析,建立了基于几何法计算广义可 靠指标的数学模型“”。赵可采用定性和定景相结合方法建立了方案优选的模糊决策模 型,结合工程实例,给出了计算方法和步骤“”。徐新跃采埘模糊事件概率的数学模型, 对单桩极限承载力的失效概率进行了初步分析,在考虑了参数随机变异性和事件模糊 性的基础上。利用模糊随机理论和可靠度理论推导出桩基极限承载力取值的模糊失效 概率“”。b b d , 曼克服了传统的随机统计仅仅单独地顾及了试样的随机性而没有顾及试 样的模糊性,采用随机一模糊统计的方法发现随机一模糊统计比通常的随机统计办法 得出的数字特征指标的变异性要小“”。孙林柱根据深基坑支护工程的特点,建立支护 方案的指标体系,运用层次分析法确定了指标的权雨,聚用模糊数学的方淡构j i | ij , 二级模糊评价模型。将指标因素的不确定性进行定量化”1 。徐军利c = :有的经验羽i 试 验资料确定岩土参数的概率分布。用模糊综合评判方法与b a y e s 理论相结合,给m f 小样本试验数据确定岩土参数的概率分和m 1 。 6 华中科技大学硕士学位论文 1 5 本文的主要工作 复合地基众多的优良性能非常适合现阶段中国发展的国情,因此,国内愈来愈多 的建筑物采用这种安全并且经济盼地基处理方法。鉴于岩土工程方面的可靠度研究落 后于结构工程方面,运用模糊可靠度理论方法对复合地基的进行研究势在必行。 本文研究的主要内容如下: 1 介绍复合地基的分类和基本特点,并对模糊可靠度理论在复合地基中的运用做 了可行性分析。 2 鉴于工程实践中复合地基处理的多为软土地基,然而软土这一名词在长期习惯 中形成的概念是比较模糊的,只有定性的描述,没有定量的分析。本文引入模 糊数学的基本概念,对其加以讨论并进行划分。 3 复合地基的稳定在一定程度上可视为一模糊事件,由于影响复合地基承载力的 因素常常表现出不同程度的随机变异性,复合地基承载力也具有随机变异性。 本文建立了复合地基的极限状念方程,进i 酊利用概率理论与模糊数学建:复仑 地基失稳的模糊概率公式,并对参数c ,妒,与模糊失效概率的关系作了分析。 4 一种新的复合地基破坏失稳的分析方法一f u z z y 综合评判法,即采用二级f u z z y 综合评判法分析复合地捧破坏失稳,对模型及分析步骤做了介2 f ,探讨了f u z z y 综合评判法在复合地基破坏失稳中的具体应用,着重分析了几个关键性问题, 即:作用因素的选取,隶属函数的构建及权值的分配。 7 华中科技大学硕士学位论文 2 模糊数学的基本概念及原理 2 1 概述 客观世界的各种现象,按其结果可分为确定性现象与非确定性现象而确定性现 象又可分为随机现象和模糊现象。当分析、研究这些非确定性的现象时,传统的微分 方程就显得无能为力了。对于随机现象,可基于概率理论及统计数学进行研究,而对 于模糊现象则以模糊数学方法加以研究。土木工程问题中,有许多研究的现象具有模 糊性。近几年来对这些具有模糊性的土工问题已开始进行了些探讨,取得了初步成 果。展现了模糊数学在土工中应用的广泛前景。但这些毕竟是刚丌始,所获得的成果 亦很有限。还有许多问题需要我们去探索、去钻研。让这新的数学分支一模糊数学更 广泛、更深入地用以解决土工中的模糊性问题。同时,模糊数学本身亦将在具体的成 用中获得不断的充实、完善与发展。 2 2 确定性现象与非确定性现象 确定性现象即在一定的条件下必然发生某种结果的现象,具有其内在的规律性, 可以根据其内在的规律推知在某种条件下,将反映出的必然结果。它具有从现象的某 一时念,判断其后任一时刻状念的决定性现象。例如变量之间相互依赖的函数关系; 变量与另一变量的导函数之间的关系等。经典数学的伟大成就之一,就足将某蝼现象 的内在性基本规律表示为相应的微分方程式,然后求其解析解或应用电子计算机求其 数值解,可以获得非常精确的计算结果。但是客观世界非常复杂,除确定1 :_ l i 现象外还 存在大量的非确定性现象。不管是在自然科学或社会科学中,亦不管是在人们的生活 中还是在工作中,都存在着众多的非确定性现象。例如在一次投骰予i j ,人们足无法 肯定将出现的点数:在生活中人们办无法确切地决定j | j 青年、中年和老年之问精确舆 实的划分年龄:某项工程其安全运转的确切期限究竟是多少等诸如此类的非确定性的 问题,经典的微积分学是难以解决的。过去人们都习惯。r 将客观| l j = 界的荇种现豫都作 为确定性现象处理,在一些理想化的假定下或条件下进行预测和估算。不论所获得的 华中科技大学硕士学位论文 资料是否完全反映真实情况,也不管所依据的分析数掘的可靠性如何,以及用以评定 现象的标准或现象本身的定义是否明确,一律视为确定性现象进行求解、决策,显然 这种用确定性观点处理这些非确定性现象,所求得的结果当然不能完仝胃信。所以不 宜用确定性方法去研究非确定性现象。 2 3 非确定性现象的随机性和模糊性 2 3 1 现象的随机性 所谓随机现象是由于人们对复杂事物的认识的局限性,对因果关系不能全面掌握, 因而对所谓的一定条件下出现的结果将会不全相同,人们不能预先作出确切的判断。 随机现象表面上是偶然性在起作用,可是当结果出现后却是肯定的现象。对于随机现 象来说,每时刻每个个体所处的状态是偶然的、随机的,但值得注意的是t 虽然这 些大量个体本身处于各种不同的状态,表现出随机性,呈偶然现象,但却并不是毫无 规律。在考察大量的现象时,每个个体在某一时刻的状念虽是随机的,或姆次试验结 果是随机的,但其总体现象或大量的重复试验中,它们又显示出某种固有的规律性, 这种规律性就称为统计规律性。为从这些现象表面的偶然性,随机性巾觅求其内存的 统计规律性以及每一随机现象出现的可能性是多少,形成了概率理论、数理统计、随 机过程等随机数学。 2 3 2 现象的模糊性 客观世界存在着大量的模糊现象。所谓的模糊现象是由于评定这些现象的标准或 现象本身的定义是模糊的,没有明确的界限,而构成的模糊的不确定性。对1 。个概 念束说都有定的外延与内涵。外延是指所有适合于某一概念的一切现象,内涵则是 外延所包括的一切对象具有的本质属性。例如土工中所谓的天然地基这一概念的外延, 即包括岩基、碎石地基、砂土地基和粘性土地基等。而其内涵则为一切天然地基所j t 有的本质属性,即不需要人为的加固处理。模糊现象即没有明确的外延,其内涌也是 模糊的。例如土的类别以及人们在生活中区分少年、青年、中年和老年等,都见明确 的外延和内涵,属模糊现象的范畴。人们在处理客观世界的模糊现象时,忽略了用模 糊数学方法来解决模糊问题,而仅仅采用经典数学的确定性方法对待弥散性的、非定 9 华中科技大学硕士学位论文 量化的模糊现象,常常陷入困境,无能为力,因而迫使人们在探索中产生并发展了模 糊数学。 2 4 模糊集合与隶属函数 2 4 1 模糊集合与隶属函数的基本概念 z a d e h 2 1 1 教授于1 9 6 5 年首次引入注目地提出了模糊集合的概念。他认为复杂性与 精确性往往是不相容的,随着系统的复杂性增加,人们对这一系统作出精确的、有意 义的描述能力减小,以至于不可能做出精确的分析与描述。人们之所以能够进行大景 的信息处理,从中获得所需要的内容,正是人们的近似思维的结果。扎德引入模糊集 的基本思想是:把普通集合中的绝对隶属关系加以扩充,使元素的对集合的隶属度山 只能取0 和l 这两个值,推广到可以取单位区问f o ,1 1 中的任意一数值,从而实现定最 地刻画模糊性事物。 在普通集合中,元素”对集合a 的隶属度只有0 和l 这两个数值。模糊集合则把 集彳的隶属函数在u 上的值,即“刈a 的隶属度,从0 或l 扩充到了f o ,l l 的闭区m 。如 果论域u 中的任一“元素对一的隶属函数以在“上都对应着一个值以( ”) ,且以( ) 满 足 即 0儿)1(2-1) 川( ) 【0 1 1 】 ( 2 2 ) 我们则说隶属函数以( “) 确定了论域u 上的一个模糊子集a ,或简称模糊集a ,a 。( “) 称为“对于模糊子集a 的隶属度。u 。( ”) 的火小反映了“对1 j 模糊集a 的隶属程度, 以( “) 的值越接近于1 。表示“隶属于a 的程度越高;,f 。( “) 的值越接近j j0 ,农巧“,他 属于a 的程度越低。 通俗地l 兑,论域【,上的模糊子集a 是指u 中的具有某种性质的元素的令体,f 而这 些元素又具有某种不分明的界限。对于论域u 中的任一元素,根掘其所具有的性质, n 华中科技大学硕士学位论文 可以用f o ,1 1 区间中的某个数值来刻画其隶属于模糊集彳的程度。 在上述模糊集概念的基础上,从集合论的观点出发,既可恰当地建立起模糊系统 和模糊现象的数学模型,又将数学方法引入具有模糊性的领域中,研究模糊系统和模 糊现象中的客观规律。 2 4 2 隶属函数的客观意义及确定隶属函数的基本步骤 模糊概念是客观事物的本质属性在人们头脑中的反应,是人类社会在长期发展过 程中约定俗成的东西。模糊性的根源在于客观事物的差异之问存在着中问过渡,存f 11 着办此亦彼的现象。当然,隶属函数的具体确定,确实包含着人脑的加1 :,其巾包含 着某种心理过程。心理物理学的大量实验表明,人的各种感觉所反映出来的心理量与 外界刺激的物理量之问保持着相当严格的关系,因此,隶属函数是有某种限定的,是 对模糊现象、模糊概念具有客观性的一种定量刻画,而不足主观任意地捏造的。 然而人们在研究模糊性事物的客观规律时,对模糊事物的认以却带有定程度的 主观性,因为模糊事物的界限在每个人的心目中是不会完全样的,冈此承认定的 主观性是模糊性的一个特点,所以隶属函数的建立,虽然本质f :是客观的,f | i 卸允订: 有一定的人为技巧,允许人们根据自己的专业知识和实际经验灵活构造。综一卜所述, 模糊性是客观和主观统一的反映,定量刻画模糊性的隶属函数币是这种客观和薹观统 一的具体体现。在实际应用中,确定隶属函数的方法多种多样,并没有一个统一的模 式。对同一模糊现象,人们使用不同的方法所建立的反映这模糊现豫们隶属函数足 不同的,但只要隶属函数能恰如其分地刻画该模糊现象,尽管形式不同,在解决和处 理模糊现象时仍能殊途同归。 确定隶属函数的般步骤: ( 1 ) 深刻了解所研究问题的具体内容,弄清产生模糊性的客观原因及其神:研究n d 题中的实际意义,明确建立隶属函数的目的。 ( 2 ) 寻找能够表示所研究对象特征的客观规律性,这种客观规律性最好能用自然 语言表现为定性规则。先不必考虑其可靠性和逻辑上的相互矛盾性等,醺 要的是尽- j 能多地收集专家经验规律和逻辑性法则,或试验总结舰 : t 等。 ( 3 ) 核实所收集到的规律内容的全面性和规律的可靠性,掌握符合这利规律的环 华中科技大学硕士学位论文 境条件和相互关系。 ( 4 ) 用普通集合和二值逻辑关系刻画以自然语言表述的定性规则的内容。 ( 5 ) 对于二值逻辑中不适合的点和普通集合中的边界过于严格的点。赋予隶属度 来构造隶属函数。 2 5 模糊综合评判及模糊概率分析 2 5 1 模糊综合评判 自然界及人文社会中有许多现象的和事物的属性受多种因素的影响,非单一因素 所能确定,其属性为多因素综合影响的结果。对这种多因素影响的现象或事物往往需 要用多个指标刻划其本质与特征,作出总的评价。即对评判对象的全体,根据所给的 条件赋予每个对象一非负实数的评判指标,再据此排序择优,即所谓综合评判【2 22 5 i 。 1 单因素模糊评判 以模糊综合评判去评价一种多凶素影响的事物,首先需要确定有关的影响凼索集, 主要根据评判对象的属性研究而定。其次按问题的要求选定评判等级集。事物的每个 影响因素对于各等级的评价结果,| j 构成评价集上的一个模糊r 集,这就足竹素模 糊评判。例如对出售的某种服装,挑选了1 0 0 名顾客进行评判,预先选定评判集为 v = 很喜欢,喜欢,不太再欢,不喜欢 ( 2 3 ) 对该服装花色的评判结果为喜欢v 上的模糊子集。 r i = ( r e i ,2 ,) ( 2 - - 4 ) 冠即为对花色的单因素模糊评判。这种评判结果显然比用单一得分数更全面地反映j 评判信息。 同样可以分别对服装的样式、牢度、价格3 个因素进行单因素模糊评判,它们也 分别是v 上的模糊子集。 r2 ( r 2 i ,r 2 2 ,r 2 3 ,r 2 4 ) ( 2 - 5 ) 马2 ( r 3 i ,r 3 2 ,r 3 3 ,r 3 ) ( 2 - 6 ) 毛。( r 4 l ,r 4 2 ,r 4 3 ,r 4 4 ) ( 2 - 7 ) 华中科技大学硕士学位论文 由它们构成模糊矩阵 r = lr 1 2 吒i,2 2 吩l ,:l i2 34 ,2 3 仫 吩4 r 4 3 ,:1 4 ( 2 8 ) 模糊矩阵r 即为该种服装的单因素模糊评判矩阵。 综合评判多影响因素的事物时,出于对各影响因素的侧重点不同。需要考虑诸i 别 素对评定等级所起作用的大小,办即对于不同的因素具有不同的权。权的分配为因素 一= ( w l ,w 2 ,) ( 2 9 ) 式中为第f 个因素所对应的权值,且一般规定 w f = 1 ( 2 一1 0 ) 将权分配模糊子集彳结合被评判对象的单因素模糊矩阵 r 曩吲 沪 即可对该评判对象进行模糊综合评判。 基于评判对象的属性与问题的要求,4 0r 可以选择不同类型的运算,从而获得4 :同的 失效概率或安全度的计算【2 6 - 2 9 i ,一般以工程设计领域中所采用的计算公式作为状 态函数和判别标准的基础。状态函数的通常的表达式为: z = z ( r ,s ) ( 2 1 3 ) 华中科技大学硕士学位论文 抗力效应r 与荷载效应s 中都包含有一些基本变量,可写为 r = r ( 薯,嘞,h ) ( 2 - - 1 4 ) s = s ( m ,儿,儿) ( 2 一l5 ) 因而设计状态函数一般为多变量的非线形函数 z = z “,x 2 ,;y i ,y 2 ,虬) ( 2 - - 1 6 ) 其相应的判别标准通常为状态函数z 的特定值z o 。以z 和z 0 进行比较,判别是甭 失效。 将状态函数中的基本变量,屯,;m ,y 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论