




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.1双曲线及其标准方程(1),1,1.椭圆的定义,2.引入问题:,复习,|MF1|+|MF2|=2a(2a|F1F2|0)画板演示,2,3,如图(A),,|MF1|-|MF2|=|F2F|=2a,如图(B),,上面两条合起来叫做双曲线,由可得:,|MF1|-|MF2|=2a(差的绝对值),|MF2|-|MF1|=|F1F|=2a,问题1类比椭圆的定义,你能给出双曲线的定义吗?,双曲线图象,拉链画双曲线,4,两个定点F1、F2双曲线的焦点;,|F1F2|=2c焦距.,(1)2a0;,双曲线定义,|MF1|-|MF2|=2a(2a2c,则轨迹是什么?,若2a=0,则轨迹是什么?,此时轨迹为以F1或F2为端点的两条射线,此时轨迹不存在,此时轨迹为线段F1F2的垂直平分线,问题4、类比求椭圆标准方程的方法,思考如何建立适当的坐标系求双曲线标准方程?,7,双曲线的标准方程,求曲线方程的步骤:,1.建系:,2.设点:,设M(x,y),则F1(-c,0),F2(c,0),3.列式:,|MF1|-|MF2|=2a,4.化简:,8,此即为焦点在x轴上的双曲线的标准方程,9,若建系时,焦点在y轴上呢?,10,看前的系数,哪一个为正,则在哪一个轴上.-”焦点跟着正项走”,问题3:如何判断双曲线的焦点在哪个轴上?,课堂练习4判断下列方程是否表示双曲线?若是,求出及焦点坐标。,先把非标准方程化成标准方程,再判断焦点所在的坐标轴。,总结经验,11,问题4:双曲线的标准方程与椭圆的标准方程有何异同点?,F(c,0),F(c,0),a0,b0,但a不一定大于b,c2=a2+b2,ab0,a2=b2+c2,|MF1|MF2|=2a,|MF1|+|MF2|=2a,F(0,c),F(0,c),12,课堂练习:,1、已知点F1(-8,3)、F2(2,3),动点P满足|PF1|-|PF2|=10,则P点的轨迹是(),A、双曲线B、双曲线一支C、直线D、一条射线,2、若椭圆与双曲线的焦点相同,则a=,3,D,13,讨论:,当取何值时,方程表示椭圆,双曲线,圆。,解:由各种方程的标准方程知,,当时方程表示的曲线是椭圆,当时方程表示的曲线是圆,当时方程表示的曲线是双曲线,14,例1已知方程表示双曲线,求的取值范围。,分析:由双曲线的标准方程知该双曲线焦点可能在轴也可能在轴,故而只要让的系数异号即可。,练习:已知方程表示双曲线,求m的取值范围,15,例2、已知双曲线上一点,P到,双曲线的左焦点的距离为16,则它到右焦点,的距离为.,4或28,16,拓展延伸,.已知F1、F2为双曲线的左,右焦点,直线L过F1,交双曲线左支于M,N两点,若|MN|=,求MF2N的周长.,7,m,17,18,19,20,变式训练,求适合下列条件的双曲线的标准方程,(1)焦点在x轴上,,(2)焦点(0,6),(0,6),经过点(2,5),21,问题5:用待定系数法求标准方程的步骤是什么?,1、定位:确定焦点的位置;2、设方程3、定量:a,b,c的关系,焦点在x轴上:,焦点在y轴上:,22,例4、已知双曲线的焦点在y轴上,并且双曲线上两点P1、P2的坐标分别为(1,)、(),求双曲线的标准方程.,23,设双曲线方程为mx2+ny21(mn0),则解得所求方程为,拓展训练求过点且焦点在坐标轴上的双曲线标准方程.,若已知双曲线上两点,通常设方程为mx2+ny2=1(mn0),这种设法比设双曲线的标准方程计算更简便,也避免了讨论双曲线的焦点位置,24,例5、已知两地相距,在地听到炮弹爆炸声比在地晚,且声速为,求炮弹爆炸点的轨迹.,分析:依题意有,爆炸地点距两地的距离差值为一个定值,故而可知,爆炸点在以为焦点的双曲线上,又在地听到的晚,所以爆炸点离较远,应是靠近的一支。,25,变式训练相距2000m的两个哨所A、B,听到远处传来的炮弹的爆炸声。已知当时的声速是330m/s,在A哨所听到爆炸声的时间比在B哨所听到时迟4s,试判断爆炸点在什么样的曲线上,并求出曲线的方程。,26
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《迷网青春》观后感
- 集中式陆上风电工程初步设计
- 河道生态修复工程规划设计方案(参考模板)
- 妆容设计分享
- 校本教研同步资源-必修3单元测U2英语试卷含解析
- 宿迁泽达职业技术学院《管理会计理论与实务》2023-2024学年第二学期期末试卷
- 福建信息职业技术学院《地球系统数值模拟》2023-2024学年第二学期期末试卷
- 和田师范专科学校《电子商务网络数据库》2023-2024学年第二学期期末试卷
- 杨凌职业技术学院《进出口业务模拟操作》2023-2024学年第二学期期末试卷
- 宁夏艺术职业学院《专题设计V》2023-2024学年第二学期期末试卷
- 江苏省南京市、盐城市2025届高三年级5月第二次模拟考试政治试题及答案(南京盐城二模)
- 快递员合同协议书范本
- 互联网+农产品商业计划书
- 2025届云南省昆明市“三诊一模”高考模拟考试历史试题(含答案)
- 公司全员安全生产责任制度
- 2025年陕西省西安交大附中中考物理三模试卷(含解析)
- 公司安全事故隐患内部举报、报告奖励制度
- DL-T5344-2018电力光纤通信工程验收规范
- GB∕T 36266-2018 淋浴房玻璃(高清版)
- 外贸报关用发票、装箱单、合同、报关单模板
- 安全联锁监控系统使用说明书
评论
0/150
提交评论