MATLAB基础性实验报告.doc_第1页
MATLAB基础性实验报告.doc_第2页
MATLAB基础性实验报告.doc_第3页
MATLAB基础性实验报告.doc_第4页
MATLAB基础性实验报告.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.一、实验要求:了解插值与拟合的基本原理和方法;掌握用MATLAB计算插值与作最小二乘多式拟合和曲线拟合的方法;通过范例展现求解实际问题的初步建模过程;通过动手作实验学习如何用插值与拟合方法解决实际问题,提高探索和解决问题的能力。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。二、实验仪器、设备或软件: 电脑,MATLAB软件三、实验内容: 1编写插值方法的函数M文件;2用MATLAB中的函数作函数的拟合图形;3针对实际问题,试建立数学模型,并求解。四、实验步骤: 1开启软件平台MATLAB,开启MATLAB编辑窗口; 2根据各种数值解法步骤编写M文件; 3保存文件并运行; 4观察运行结果(数值或图形); 5写出实验报告,并浅谈学习心得体会。五、实验要求与任务:根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的问题数学模型算法与编程计算结果分析、检验和结论心得体会)。1天文学家在1914年8月的7次观测中,测得地球与金星之间距离(单位:米),并取得常用对数值,与日期的一组历史数据如下表:日期(号)18 20 22 24 26 28 30距离对数9.96177 9.95436 9.94681 9.93910 9.93122 9.92319 9.91499由此推断何时金星与地球的距离(米)的对数值为9.93518?解:输入命令days=18 20 22 24 26 28 30;distancelogs=9.96177 9.95436 9.94681 9.93910 9.93122 9.92319 9.91499;t1=interp1(distancelogs,days,9.93518) %线性插值t2=interp1(distancelogs,days,9.93518,nearest) %最近邻点插值t3=interp1(distancelogs,days,9.93518,spline) %三次样条插值t4=interp1(distancelogs,days,9.93518,cubic) %三次插值计算结果:t1 = 24.9949t2 = 24t3 = 25.0000t4 = 25.0000综上所得,可推断25日金星与地球的距离(米)的对数值为9.93518。2在某海域测得一些点(x,y)处的水深z由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)(-50,150)里的哪些地方船要避免进入。xyz129 140 103.5 88 185.5 195 1057.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8xyz 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9(1) 输入插值基点数据;(2) 在矩形区域(75,200)(-50,150)作二维插值;(3) 作海底曲面图;(4) 作出水深小于5的海域范围,即z=5的等高线。解:程序:%输入插值基点数据x=129 140 103.5 88 185.5 195 105 157.5 107.5 77 81 162 162 117.5;y=7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5;z=4 8 6 8 6 8 8 9 9 8 8 9 4 9;z=-z;%在矩形区域(75,200)(-50,150)作二维插值cx=75:0.5:200;cy=-50:0.5:150;cz=griddata(x,y,z,cx,cy,cubic);%作海底曲面图subplot(1,2,1),meshz(cx,cy,cz)xlabel(x),ylabel(y),zlabel(z)%作出水深小于5的海域范围,即z=5的等高线subplot(1,2,2),c,h=contour(cx,cy,cz);clabel(c,h,-5) 插值后作出的海底曲面图及等高线图如下:若船的吃水深度为5英尺,在矩形区域(75,200)(-50,150)里如上图等高线-5m内的地方船要避免进入。3用电压V=10伏的电池给电容器充电,电容器上t时刻的电压为 ,其中V0是电容器的初始电压,是充电常数。试由下面一组(t,v)数据确定V0和 。t (秒)0.5 1 2 3 4 5 7 9v (伏)6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63解一:(1)用命令lsqcurvefit。1)编写M文件curvefun1.mfunction f=curvefun1(x,tdata)f=10-(10-x(1)*exp(-tdata/x(2);2)主程序xitithree1.m如下tdata=0.5 1 2 3 4 5 7 9;cdata=6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63;x0=0.4316,1;x=lsqcurvefit(curvefun1,x0,tdata,cdata)f=curvefun1(x,tdata)3)运行主程序,得结果为x = 5.5577 3.5002f =6.1490 6.6616 7.4913 8.1147 8.5832 8.9353 9.3987 9.6604即拟合得V0=5.5577, =3.5002。(2)用命令lsqnonlin。1)编写M文件curvefun2.mfunction f=curvefun2(x)tdata=0.5 1 2 3 4 5 7 9;cdata=6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63;f=cdata-10+(10-x(1)*exp(-tdata/x(2);2)主程序xitithree2.m如下x0=0.4316,1;x=lsqnonlin(curvefun2,x0)f=curvefun2(x)3)运行主程序,得结果为x = 5.5577 3.5002f =0.2110 -0.1816 -0.2313 0.1053 0.0768 0.0547 0.0313 -0.0304结果同上,即拟合得V0=5.5577, =3.5002。解二:(1)对将要拟合的非线性模型,建立M文件volum.m如下:function yhat=volum(beta,t)yhat=10-(10-beta(1)*exp(-t./beta(2);(2)输入数据:t=0.5 1 2 3 4 5 7 9;y=6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63;beta0=5 3;(3)求回归系数:beta,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论