已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
14.1.4整式乘法,第十四章整式的乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,第2课时多项式与多项式相乘,新人教版八年级数学上册教学课件,1.理解并掌握多项式与多项式的乘法运算法则.(重点)2.能够运用多项式与多项式的乘法运算法则进行计算.(难点),导入新课,复习引入,1.如何进行单项式与多项式乘法的运算?,再把所得的积相加.,将单项式分别乘以多项式的各项,,2.进行单项式与多项式乘法运算时,要注意什么?,不能漏乘:,即单项式要乘遍多项式的每一项,去括号时注意符号的确定.,讲授新课,互动探究,问题1某地区在退耕还林期间,有一块原长m米,宽为a米的长方形林区增长了n米,加宽了b米,请你计算这块林区现在的面积.,ma,na,mb,nb,你能用不同的形式表示所拼图的面积吗?,这块林区现在长为(m+n)米,宽为(a+b)米,(m+n)(a+b),m(a+b)+n(a+b),ma+mb+na+nb,方法一:,方法二:,方法三:,由于(m+n)(a+b)和(ma+mb+na+nb)表示同一块地的面积,故有:,(m+n)(a+b)=,ma,+mb,+na,+nb,如何进行多项式与多项式相乘的运算?,实际上,把(a+b)看成一个整体,有:,=ma+mb+na+nb,(m+n)(a+b),=m(a+b)+n(a+b),(m+n)X=,mX+nX,?,若X=a+b,如何计算?,多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.,多项式乘以多项式,(a+b)(m+n),=,am,1,2,3,4,+an,+bm,+bn,多乘多顺口溜:,多乘多,来计算,多项式各项都见面,乘后结果要相加,化简、排列才算完.,例1计算:(1)(3x+1)(x+2);(2)(x-8y)(x-y);(3)(x+y)(x2-xy+y2).,解:(1)原式=3xx+23x+1x+12=3x2+6x+x+2,(2)原式=xx-xy-8xy+8y2,=3x2+7x+2;,=x2-9xy+8y2;,(3)原式=xx2-xxy+xy2+x2y-xy2+yy2=x3-x2y+xy2+x2y-xy2+y3=x3+y3.,例2先化简,再求值:(a2b)(a22ab4b2)a(a5b)(a3b),其中a1,b1.,当a1,b1时,,解:原式a38b3(a25ab)(a3b),a38b3a33a2b5a2b15ab2,8b32a2b15ab2.,原式821521.,例3已知ax2bx1(a0)与3x2的积不含x2项,也不含x项,求系数a、b的值,解:(ax2bx1)(3x2),3ax32ax23bx22bx3x2,,积不含x2的项,也不含x的项,,方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答,练一练:计算,(1)(x+2)(x+3)=_;,(2)(x-4)(x+1)=_;,(3)(y+4)(y-2)=_;,(4)(y-5)(y-3)=_.,x2+5x+6,x2-3x-4,y2+2y-8,y2-8y+15,由上面计算的结果找规律,观察填空:,(x+p)(x+q)=_2+_x+_.,x,(p+q),pq,例4已知等式(x+a)(x+b)=x2+mx+28,其中a、b、m均为正整数,你认为m可取哪些值?它与a、b的取值有关吗?请你写出所有满足题意的m的值.,解:由题意可得a+b=m,ab=28.,a,b均为正整数,故可分以下情况讨论:,a=1,b=28或a=28,b=1,此时m=29;,a=2,b=14或a=14,b=2,此时m=16;,a=4,b=7或a=7,b=4,此时m=11.,综上所述,m的取值与a,b的取值有关,m的值为29或16或11.,当堂练习,3.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()Aa=bBa=0Ca=-bDb=0,C,1.计算(x-1)(x-2)的结果为()Ax2+3x-2Bx2-3x-2Cx2+3x+2Dx2-3x+2,D,2.下列多项式相乘,结果为x2-4x-12的是()A(x-4)(x+3)B.(x-6)(x+2)C(x-4)(x-3)D.(x+6)(x-2),B,4.判别下列解法是否正确,若错,请说出理由.,解:原式,解:原式,5.计算:(1)(x3y)(x+7y);(2)(2x+5y)(3x2y).,+,7xy,3yx,=,x2+4xy-21y2;,21y2,(2)(2x+5y)(3x2y),=,=x2,2x3x,2x2y,+5y3x,5y2y,=,6x2,4xy,+15xy,10y2,=,6x2+11xy10y2.,6.化简求值:(4x+3y)(4x-3y)+(2x+y)(3x-5y),其中x=1,y=-2.,解:原式=,当x=1,y=-2时,原式=221-71(-2)-14(-2)2,=22+14-56=-20.,7.解方程与不等式:(1)(x-3)(x-2)+18=(x+9)(x+1);(2)(3x+6)(3x-6)9(x-2)(x+3),解:(1)去括号,得x2-5x+6+18=x2+10 x+9,移项合并,得15x=15,解得x=1;(2)去括号,得9x2-369x2+9x-54,移项合并,得9x18,解得x2,8.小东找来一张挂历画包数学课本已知课本长a厘米,宽b厘米,厚c厘米,小东想将课本封面与封底的每一边都包进去m厘米,问小东应在挂历画上裁下一块多大面积的长方形?,拓展提升,面积:(2m+2b+c)(2m+a),解:(2m+2b+c)(2m+a),=4m2+2ma+4bm+2ab+2cm+ca.,答:小东应在挂历画上裁下一块(4m2+2ma+4bm+2ab+2cm+ca)平方厘米的长方形.,课堂小结,多项式单项式,运算法则,多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加,(a+b)(m+n)=am+an+bm+bn,注意,不要漏乘;正确确定各符号;结果要最简,实质上是转化为单项式多项式的运算,(x-1)2在一般情况下不等于x2-12.,谢,谢,观看,数学质量检测试题命题说明一、命题指导思想:依据小学数学课程标准及小学数学教学大纲的相关要求,本学期所学教材所涉猎的基础知识、基本技能为切入点,贯彻“以学生为本,关注每一位学生的成长”的教育思想,旨在全面培养学生的数学素养。二、命题出发点:面向全体学生,关注不同层面学生的认知需求,以激励、呵护二年级学生学习数学的积极性,培养学生认真、严谨、科学的学习习惯,促进学生逐步形成良好的观察能力、分析能力及缜密的逻辑思维能力,培养学生学以致用的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60749-22-2:2025 EN-FR Semiconductor devices - Mechanical and climatic test methods - Part 22-2: Bond strength - Wire bond shear test methods
- 大数据分析软件开发实践
- 测绘数据质量控制流程优化
- 自动化系统抗干扰设计
- 物流配送模式创新研究
- 广告的租赁合同范本
- 法拍房中介合同范本
- 游船项目承包协议书
- 工程委托代管协议书
- 湖南对口援藏协议书
- 2025年婴幼儿发展引导员理论考核试题及答案
- 2025秋大象版(2017)小学科学五年级上册期末测试卷附答案(共3套)
- 2025年消防工程师真题及答案
- 黑龙江省哈尔滨市第三十二中学2025-2026学年高二上学期11月期中考试语文试题(原卷版)
- 2025年浙江省住院医师规范化培训结业考核超声波训练题及答案
- 2025年四川省泸州市中考英语试卷
- 技术经纪人培训教程大纲
- 2025国泰租赁有限公司招聘笔试历年备考题库附带答案详解试卷3套
- 视频监控系统工程监理细则
- 2025天津滨海传媒发展有限公司招聘13人笔试考试参考题库及答案解析
- 2025年变电设备检修工(中级)技能鉴定理论考试题库(含答案)
评论
0/150
提交评论