棱柱与棱锥的内切与外接练习题.doc_第1页
棱柱与棱锥的内切与外接练习题.doc_第2页
棱柱与棱锥的内切与外接练习题.doc_第3页
棱柱与棱锥的内切与外接练习题.doc_第4页
棱柱与棱锥的内切与外接练习题.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

棱柱与棱锥的内切与外接练习题一、棱锥的内切、外接球问题图1例1.正四面体的外接球和内切球的半径是多少? 例2设棱锥的底面是正方形,且,如果的面积为1,试求能够放入这个棱锥的最大球的半径.图2二、球与棱柱的组合体问题图3图4图51 正方体的内切球:球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。设正方体的棱长为,球半径为。如图3,截面图为正方形的内切圆,得;2 与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆为正方形的外接圆,易得。3 正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面作截面图得,圆为矩形的外接圆,易得。例3.在球面上有四个点、.如果、两两互相垂直,且,那么这个球的表面积是_.4构造直三角形,巧解正棱柱与球的组合问题正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。例4.已知三棱柱的六个顶点在球上,又知球与此正三棱柱的5个面都相切,求球与球的体积之比与表面积之比。图6典型例题1球的截面例1 球面上有三点、组成这个球的一个截面的内接三角形三个顶点,其中,、,球心到这个截面的距离为球半径的一半,求球的表面积典型例题2球面距离例2 过球面上两点作球的大圆,可能的个数是()A有且只有一个 B一个或无穷多个 C无数个 D以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B例3球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过3个点的小圆的周长为,求这个球的半径例4、是半径为的球的球面上两点,它们的球面距离为,求过、的平面中,与球心的最大距离是多少?典型例题3其它问题例5自半径为的球面上一点,引球的三条两两垂直的弦,求的值例6试比较等体积的球与正方体的表面积的大小典型例题4球与几何体的切、接问题例7一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为的铁球,这时水面恰好和球面相切问将球从圆锥内取出后,圆锥内水平面的高是多少?例8设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比例9把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离例10如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小图1棱柱与棱锥的内切与外接练习题答案一、棱锥的内切、外接球问题图1例1.正四面体的外接球和内切球的半径是多少? 分析:运用正四面体的二心合一性质,作出截面图,通过点、线、面关系解之。解:如图1所示,设点是内切球的球心,正四面体棱长为由图形的对称性知,点也是外接球的球心设内切球半径为,外接球半径为正四面体的表面积正四面体的体积, 在中,即,得,得【点评】由于正四面体本身的对称性可知,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为 ( 为正四面体的高),且外接球的半径,从而可以通过截面图中建立棱长与半径之间的关系。例2设棱锥的底面是正方形,且,如果的面积为1,试求能够放入这个棱锥的最大球的半径.图2解:平面,由此,面面.记是的中点,从而.平面,设球是与平面、平面、平面都相切的球.如图2,得截面图及内切圆不妨设平面,于是是的内心.设球的半径为,则,设,.,当且仅当,即时,等号成立.当时,满足条件的球最大半径为. 练习:一个正四面体内切球的表面积为,求正四面体的棱长。(答案为:)【点评】根据棱锥的对称性确定内切球与各面的切点位置,作出截面图是解题的关键。二、球与棱柱的组合体问题图3图4图54 正方体的内切球:球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。设正方体的棱长为,球半径为。如图3,截面图为正方形的内切圆,得;5 与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆为正方形的外接圆,易得。6 正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面作截面图得,圆为矩形的外接圆,易得。例3.在球面上有四个点、.如果、两两互相垂直,且,那么这个球的表面积是_.解:由已知可得、实际上就是球内接正方体中交于一点的三条棱,正方体的对角线长就是球的直径,连结过点的一条对角线,则过球心,对角线4构造直三角形,巧解正棱柱与球的组合问题正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。例4.已知三棱柱的六个顶点在球上,又知球与此正三棱柱的5个面都相切,求球与球的体积之比与表面积之比。分析:先画出过球心的截面图,再来探求半径之间的关系。图6解:如图6,由题意得两球心、是重合的,过正三棱柱的一条侧棱和它们的球心作截面,设正三棱柱底面边长为,则,正三棱柱的高为,由中,得,练习:正四棱柱的各顶点都在半径为的球面上,求正四棱柱的侧面积的最大值。(答案为:)【点评】“内切”和“外接”等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,作出合适的截面图来确定有关元素间的数量关系,是解决这类问题的最佳途径。典型例题1球的截面例1 球面上有三点、组成这个球的一个截面的内接三角形三个顶点,其中,、,球心到这个截面的距离为球半径的一半,求球的表面积分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式求出球半径解:,是以为斜边的直角三角形的外接圆的半径为,即截面圆的半径,又球心到截面的距离为,得球的表面积为说明:涉及到球的截面的问题,总是使用关系式解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量【练习】过球表面上一点引三条长度相等的弦、,且两两夹角都为,若球半径为,求弦的长度由条件可抓住是正四面体,、为球上四点,则球心在正四面体中心,设,则截面与球心的距离,过点、的截面圆半径,所以得典型例题2球面距离例2 过球面上两点作球的大圆,可能的个数是()A有且只有一个 B一个或无穷多个 C无数个 D以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B例3球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过3个点的小圆的周长为,求这个球的半径分析:利用球的概念性质和球面距离的知识求解设球的半径为,小圆的半径为,则,如图所示,设三点、,为球心,又,是等边三角形,同样,、都是等边三角形,得为等边三角形,边长等于球半径为的外接圆半径,说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题例4、是半径为的球的球面上两点,它们的球面距离为,求过、的平面中,与球心的最大距离是多少?分析:、是球面上两点,球面距离为,转化为球心角,从而,由关系式,越小,越大,是过、的球的截面圆的半径,所以为圆的直径,最小解:球面上、两点的球面的距离为 ,当成为圆的直径时,取最小值,此时,取最大值, 即球心与过、的截面圆距离最大值为说明:利用关系式不仅可以知二求一,而且可以借此分析截面的半径与球心到截面的距离之间的变化规律此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角有关,而球心角又直接与长度发生联系,这是使用或者求球面距离的一条基本线索典型例题3其它问题例5自半径为的球面上一点,引球的三条两两垂直的弦,求的值分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联解:以为从一个顶点出发的三条棱,将三棱锥补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径 =说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算例6试比较等体积的球与正方体的表面积的大小分析:首先抓好球与正方体的基本量半径和棱长,找出等量关系,再转化为其面积的大小关系解:设球的半径为,正方体的棱长为,它们的体积均为,则由,由得 ,即典型例题4球与几何体的切、接问题例7一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为的铁球,这时水面恰好和球面相切问将球从圆锥内取出后,圆锥内水平面的高是多少?分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解解:如图作轴截面,设球未取出时水面高,球取出后,水面高,则以为底面直径的圆锥容积为,球取出后水面下降到,水体积为又,则, 解得例8设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的解:如图,正四面体的中心为,的中心为,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离设,正四面体的一个面的面积为依题意得, 又即所以说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径(为正四面体的高),且外接球的半径例9把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2解:四球心组成棱长为2的正四面体的四个顶点,则正四面体的高而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为例10如图1所示,在棱长为1的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论