英文.pdf_第1页
英文.pdf_第2页
英文.pdf_第3页
英文.pdf_第4页
英文.pdf_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

StudyonNeuralNetworksControlAlgorithmsfor AutomotiveAdaptiveSuspensionSystems L.J.Fu,J.G.Cao SchoolofAutomobileEngineering,Chongqing InstituteofTechnology, XingshengRoadNo.04Yangjiaping, Chongqing,China400050 E-mail:flj Abstract-Thesemi-activesuspension,whichconsistsof passivespringandactiveshockabsorberinthelightof differentroadconditionsandautomobilerunningconditions,is themostpopularautomotivesuspensionbecauseactive suspensioniscomplicatedinstructureandpassivesuspension cannotmeetthedemandsofvariousroadconditionsand automobilerunningconditions.Inthispaper,aneurofuzzy adaptivecontrolcontrollerviamodelingofrecurrentneural networksofautomotivesuspensionispresented.Themodeling ofneuralnetworkshasidentifiedautomotivesuspension dynamicparametersandprovidedlearningsignalsto neurofuzzyadaptivecontrolcontroller.Inordertoverify controlresults,amini-busfittedwithmagnetorheologicalfluid shockabsorberandneurofuzzycontrolsystembasedonDSP microprocessorhasbeenexperimentedwithvariousvelocity androadsurfaces.Thecontrolresultshavebeencompared withthoseofopenlooppassivesuspensionsystem.These resultsshowthatneuralcontrolalgorithmexhibitsgood performancetoreductionofmini-busvibration. I.INTRODUCTION Themainfunctionsofautomotivesuspensionsystemare toprovidesupporttheweightofautomobile,toprovide stabilityanddirectioncontrolduringhandlingmaneuvers andtoprovideeffectiveisolationfromroaddisturbances. Thesedifferenttasksleadtoconflictingdesignrequirements. Thesemi-activesuspension,whichconsistsofpassive springandactiveshockabsorberwithcontrollabledamping forceinthelightofdifferentroadconditionsandautomobile runningconditions,isthemostpopularautomotive suspensionbecausetheactivesuspensioniscomplicatedin structureandconventionalpassivesuspensioncannotmeet thedemandsofdifferentroadconditionsandautomobile runningconditions.Simi-activesuspensionwithvariable magnetorheological(MR)fluidshockabsorbershassome advantagesinreducingautomobilevibrationatrelativelow castandpower.Sofar,thereareanumberofcontrol methodsthathavebeendevelopedforsemi-active suspension,startwithskyhookmethoddescribedby Karnoopp,etal.lThismethodattemptstomaketheshock absorberexertaforcethatisproportionaltotheabsolute velocitybetweensprungmasses.Someinvestigationsuse C.R.Liao,B.Chen SchoolofAutomobileEngineering,Chongqing InstituteofTechnology, XingshengRoadNo.04Yangjiaping, Chongqing,China400050 E-mail:chenbao( linearsuspensionmodel,whichislinearizedaroundthe operationalpoints,andcontrolalgorithmarederivedusing linearmodels,suchasLQGandrobustcontrol2,3.These controlmethodscannotmakeafullexploitationof semi-activesuspensionresourcesbecauseofautomotive suspensionisinherentnon-linearperformance.Inorderto improveperformanceofnonlinearsuspensionsystem,some intelligentcontroltechniques,suchasfuzzylogiccontrol, neuralnetworkscontrolandneurofuzzycontrol,havebeen recentlyappliedtononlinearsuspensioncontrolby researchers4,5. Inthispaper,aneurofuzzyadaptivecontrolcontrolleris appliedtocontrolsuspensionvibrationviamodelingof recurrentneuralnetworksofautomotivesuspensionand continuouslyvariableMRshockabsorbers.Thecontroller structuresdesignandneurofuzzycontrolalgorithmsare presentedinsection2.Arecurrentneuralnetworks dynamicsmodelingofsuspensionareshownrespectivelyin section3.Thecontrolsystemexperimentationsaregivenin section4andsomeconclusionsarefinallydrawninsection 5. HI.NEUROFUZZYADAPTIVECONTROLALGORITHMSFOR AUTOMOTIVESUSPENSIONS Theneurofuzzycontrolsystempresentedinthispaper, showninFigure1,iscomposedofaneurofuzzynetwork andarecurrentneuralnetworkmodelingofmini-bus suspension.Theneurofuzzynetworkisdefinedasadaptive controller,whichhasfunctionoflearningandcontrol.The functionofrecurrentneuralnetworkistoidentifymini-bus suspensionmodelparameters.y(t)andyd(t)aresystem actualoutputandsystemdesireoutputrespectivelyinFigure 1. xl(t) issystemerrorofsystemactualoutputbetween systemdesireoutput,x2(t)issystemerrorrateofsystem actualoutputbetweensystemdesireoutput. xi(t)and x2(t) aredefinedasfellows: xI(t) e(t)=y(t)-Yd(t)(1) X2(t)=e(t)=e(t+1)-e(t)(2) 0-7803-9422-4/05/$20.00C2005IEEE 1795 Fig.1.structureofneuralnetworkscontrolsystemforsuspension networkscontrolsystem.Theglobalsetsoflinguistic variablesaredefinedrespectivelyasfellows: - =-E,E, 1=-AtJuU-U,U.Theneurofuzzycontrollerhas fourlayersne-urons,inwhichthefirstandthesecondlayers correspondtothefuizzyrulesif-part,thethirdlayer correspondstotheinferenceandtheforthlayercorresponds tothefuzzyrulesthen-part.Thesetsxl, x2and uare respectivelydivinedintosevenfuzzysubsetsofwhichfuzzy setsX1,X2Uarecomposedasfallowsrules: X1=NB,NM,NS,ZE,PS,PM,PB X2=NB,NM,NS,ZE,PS,PM,PB U=NB,NM,NS,ZE,PS,PM,PB Inthispaper,theGaussianmembershipfunctionareused inelementsoffuzzysets X1 X2andtheelementsof fuzzysetUisdefinedasfollowingmembershipfunction ci(u)J0(otherwise) 0(3)=I(3)k=1,2,3 .49 j=13,23,3 .7 4949 Layer4:(4)-(3)wkand0(4)=I(4)/0(3) k=1k=1 Wherexl(t)x2(t)aretheinputsofneuralnetworks, wkisweightofneuralnetwork, 0(4) iStheoutputof neuralnetworksinwhich0(4)=U, ai,b,j arethecentral valuesofGaussianmembershipfunction.Learning algorithmsoftheneuralnetworkscontrollerisbasedon gradientdescentbymeansoferrorsignalback-propagation method.Theerrorback-propagationalgorithm.saccomplish synapticweightadjustmentthroughminimizationofcost function5. m.ALGORITHMFORRECURRENTNEURALNETWORKS SUSPENSIONDYNAMICALMODELING Arecurrentneuralnetworkdesignedtoapproximateto theactualoutputofsuspension y(t) isthree-layerneural networkwithonelocalfeedbackloopinthehiddenlayer, whosearchitecturesareshowninFigure3.Thepropertythat isofprimarysignificanceforrecurrentneuralnetworkisthe abilityofthenetworktolearnfromitsenvironmentandto improveitsperformancesbymeansofprocessof adjustmentsappliedtoitsweights.Therecurrentnetwork withinputsignal II(t)=u(t) andI2(t)=y(t-1)has outputy(t)bylocalfeedbackloopneuroninthehidden layerwhoseoutputsumis Sj(t) correspondingtothe neuronjth. (3) Fig.2.schematicofneuralnetworkscontrollerforadaptivesuspension WhereU*Eu.Theinput/outputispresentedasfollows accordingtoFigure2. Layer1:I(1)x(t)andO)xi(t)i=1,2 Layer2:I-2)(t)-ai)2/b 2 and O.epx()i=1,2j=1,2,3.7 Layer3: I13)= t u(X2Q)I and Fig.3.schematicofneuralnetworksmodelingofsuspensionsystem (4)Sy()=,w.*i(t)+WJD _Xj(t-_1) i1= (i(t)+wjXj(t_l q yj(t)=1wxi(t) j=l (5) (6) 1796 wherewI,wareweightoftherecurrentneural network, Xj(t)is outputofneuronwithlocalfeedback loopneuroninthehiddenlayer,p,qareinputneuron numberandfeedbackneuronnumberrespectively.The activationfunctionforbothinputneuronsandoutput neuronsislinearfunction,whiletheactivationforneurons inthehiddenlayerissigmoidfunction. heobjectivefunctionE(t)canbedefmedinthetermsof theerrorsignale(t)as: E(t)= _y(t)-.y(t)2=1e2(t) (7) 22 Thatis,E(t)istheinstantaneousvalueoftheerror energy.Thestep-by-stepadjustmentstothesynapticweights ofneuronarecontinueduntilthesystemreachsteadystate, i.e.thesynapticweightsareessentiallystabilized. DifferentiatingE(t)withrespecttoweightvectorw yields. aE(t)_ 8 =-e(t)0Y() (8) Fromexpression(1),(2)and(3),differentiatingA(t) 0DI withrespecttotheweightvectorw1 w,- ,w,-Yrespectively yields. aS(t) =x(t) As(t) woax1Q) -( W aXI(t) aWj J aWj From(4),(5)and(6),analyzing valueofsynapticweightisdeterminedby w(t+1)=w(t)+q*e(t)89(t)(12) whereqtheleaning-rateparameter,Adetailed convergenceanalysisoftherecurrenttrainingalgorithmis rathercomplicatedtoacquiretheleaning-rateparameter value.Accordingtoexpression(13),theweightvectorw forrecurrentneuralnetworkcanbeadjusted.Weestablisha theLyapunovfunctionasfollowsV(t)=1/2*e2(t), whosechangevalueAV(t)canbedeterminedaftersome titerations,inthesensethat (13) Wehavenoticedthattheerrorsignale(t)aftersomet iterationscanbeexpressedasfollowsfromexpression(13) and(14), ae(t)ao(t)ae(t)ae(t) - ,Aw=-qe(t)=77e(t),the awOwawOw Lyapunovfunctionincrementcandeterminedaftersomet iterationsasfollows (14) Mtt)=-q- &(t)+v2.e(t)- =-V(t) where (t) 2 2jt1 6(t) 2 A=10()lp q 2-5l0(t)ll2 ql2-77O 220w (9) ?7maxa(t) 29 if qf2, thenAV(t)O, w ax1(t) D and aWj x1(t) uxi yieldsrespectivelyrecurrentformulas. ax1(t)a-fS(t)FX.x(tt1)1 ax1(O)= ,WjD = axi(t) aNi afS(t) +w a t-i) &4 LaNi ax1(o) (11) avn =0 Havingcomputedthesynapticadjustment,theupdated namelytherecurrenttrainingalgorithmisconvergent. IV.ROADTESTANDRESULTSANALYSES Tomakeademonstrationthevalidityofneuralcontrol algorithmproposedinthepaper,anexperimentalmini-bus suspensionwithMRfluidshockabsorberhasbeen manufacturedinChina.Themini-busadaptivesuspension systemconsistsofaDSPmicroprocessor,8acceleration sensors,4MRfluidshockabsorbers,and 1controllable electriccurrentpowerwithinputvoltage12V.TheDSP microprocessorreceivessuspensionvibrationsignalinput fromaccelerometersmountedrespectivelysprungmassand un-sprungmass.Inaccordancewithvibrationsignaland controlschemeinthispaper,theDSPmicroprocessor adjustsdampingofadaptivesuspensionbyapplication controlsignaltothecontrollableelectriccurrentpower connectedtoelectromagneticcoilinMRfluidshock absorbers.Magneticfieldproducedbytheelectromagnetic coilinMRfluidshockabsorberscandvarydampingforce inbothcompressionandreboundbyadjustmentofflow 1797 II ,&V(t)= 12 (t+1)-e2(t 2 behaviorsofMRfluidsindampingchannels. Raodtestonmini-busadaptivesuspensionbasedneural networkscontrolpresentedinthispaperarecarriedoutinD classroadsurfacesrespectivelyinrunningvelocity 30,40,50km/h.Duringroadtest,experimentalmini-busruns eachtestconditionataconstantspeed.Thetestexperiments ofadaptivesuspensionwithneuralnetworksandpassive suspensionsystemwerecarriedoutrepeatedlyundersame roadsurfaceandrunningvelocity.TestresultslistedinTable 1haveshownthattheadaptivesuspensionwithneural networkscanreducevibrationpowerspectraldensitiesof bothsprungmassandun-sprungmass. Figure4isthemin-bussuspensionvibrationpower spectraldensitiesofbothsprungmassandun-sprungmass withpassiveandadaptivesuspensionsystembyDclass roadsurface.Itisclearthatneuralnetworkscontrol improvesperformancesofmini-bussuspensionwithmainly improvementsoccurringaboutsprungmassresonancepeak. Thepowerspectraldensitiesindicatethattheadaptive suspensionsystemwithneuralnetworkscontrolcanreduce mini-busvibrationgreatlycomparedwithpassive suspension.Ifexcellentfizzycontrolrulesandrational modelingofshockabsorberandsuspensioncanbeobtained, theadaptivesuspensionsystemwithneuralnetworkscontrol willimprovefartherridecomfortandroadholdingand handlingstabilityofautomobileinthefuture. TABLEI min-bussuspensionroadtestresults: sprungmassandun-sprungmassaccelerationr.m.s.Values(Dclassroad) Speed30(1km/h)40(1m/h)50(kmlh) PassiveControlreducePassiveControlreducePassiveControlreduce |mass10.37560.325213.40.41400.344916.70.46940.396615.5 mass pg1.60111426610.91.89751.660312.52.34682.065212.0 mass IC,-4a |1- #,-t 0 ri-0110.1. lo1 Fry- 0Qgco1okaId-e la.r10f1 Frcqv O Fig.4.min-bussuspensionvibrationpowerspectraldensitiesofsprungmass(left) andun-sprungmass(right)withcontrolandpassive(runningspeed40km/h) V.CONCLUSIONS Inthispaper,anewrecurrentneuralnetworks-oriented suspensionmodelandneurofuzzycontrolschemesforthe mini-bussuspensionsystemwereinvestigated.Uponthe requirementofusing8accelerationsensors,aDSP controllerwithgainschedulingwasdeveloped. ConsideringthecomplexityoftheMRfluidshock absorber,theactuatordynamicshasbeenincorporated duringthehardware-in-the-loopsimulations.Itwas demonstratedthattheadaptivecontrolsystemcould 1798 achieveacompetitivecontrolperformancebyadoptingthe neurofuzzycontrolschemesandrecurrentneural networks-orientedsuspension.Becausethecontrollaw design,thegainschedulingstrategy,andthe hardware-in-the-loopsimulationmethoddevelopedinthis paper

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论