


免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料参考范本中考数学压轴试题复习第一部分专题三因动点产生的直角三角形问题撰写人:_时 间:_课前导学我们先看三个问题:1已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3已知点A(4,0),如果OAB是等腰直角三角形,求符合条件的点B的坐标图1 图2 图3如图1,点C在垂线上,垂足除外如图2,点C在以AB为直径的圆上,A、B两点除外如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便如图4,已知A(3, 0),B(1,4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C如果作BDy轴于D,那么AOCCDB设OCm,那么这个方程有两个解,分别对应图中圆与y轴的两个交点 图4例 19 2015年湖南省市中考第21题如图1,已知抛物线E1:yx2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A、B(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P,求PAA与PBB的面积之比 图1 图2动感体验请打开几何画板文件名“15益阳21”,拖动点P在抛物线E1上运动,可以体验到,点P始终是线段OP的中点还可以体验到,直角三角形QBB有两个思路点拨1判断点P是线段OP的中点是解决问题的突破口,这样就可以用一个字母表示点P、P的坐标2分别求线段AABB,点P到AA的距离点P到BB的距离,就可以比较PAA与PBB的面积之比图文解析(1)当x1时,yx21,所以A(1, 1),m1设抛物线E2的表达式为yax2,代入点B(2,2),可得a所以yx2(2)点Q在第一象限内的抛物线E1上,直角三角形QBB存在两种情况:图3 图4如图3,过点B作BB的垂线交抛物线E1于Q,那么Q(2, 4)如图4,以BB为直径的圆D与抛物线E1交于点Q,那么QD2设Q(x, x2),因为D(0, 2),根据QD24列方程x2(x22)24解得x此时Q(3)如图5,因为点P、P分别在抛物线E1、E2上,设P(b, b2),P(c, )因为O、P、P三点在同一条直线上,所以,即所以c2b所以P(2b, 2b2)如图6,由A(1, 1)、B(2,2),可得AA2,BB4由A(1, 1)、P(b, b2),可得点P到直线AA的距离PM b21由B(2,2)、P(2b, 2b2),可得点P到直线BB的距离PN2b22所以PAA与PBB的面积比2(b21)4(2b22)14图5 图6考点延伸第(2)中当BQB90时,求点Q(x, x2)的坐标有三种常用的方法:方法二,由勾股定理,得BQ2BQ2BB2所以(x2)2(x22)2(x2)2(x22)242方法三,作QHBB于H,那么QH2BHBH所以(x22)2(x2) (2x) 例 20 2015年湖南省市中考第26题如图1,二次函数yx2bxc的图象与x轴交于A(1, 0)、B(3, 0)两点,与y轴交于点C,连结BC动点P以每秒1个单位长度的速度从点A向点B运动,动点Q以每秒个单位长度的速度从点B向点C运动,P、Q两点同时出发,连结PQ,当点Q到达点C时,P、Q两点同时停止运动设运动的时间为t秒(1)求二次函数的解析式;(2)如图1,当BPQ为直角三角形时,求t的值;(3)如图2,当t2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点,若存在,求出点N的坐标与t的值;若不存在,请说明理由图1 图2动感体验请打开几何画板文件名“15湘潭26”,拖动点P在AB上运动,可以体验到,BPQ有两次机会可以成为直角三角形还可以体验到,点N有一次机会可以落在抛物线上 思路点拨1分两种情况讨论等腰直角三角形BPQ2如果PQ的中点恰为MN的中点,那么MQNP,以MQ、NP为直角边可以构造全等的直角三角形,从而根据直角边对应相等可以列方程图文解析(1)因为抛物线yx2bxc与x轴交于A(1, 0)、B(3, 0)两点,所以y(x1)(x3)x22x3(2)由A(1, 0)、B(3, 0)、C(0,3),可得AB4,ABC45在BPQ中,B45,BP4t,BQt直角三角形BPQ存在两种情况:当BPQ90时,BQBP解方程t(4t),得t2(如图3)当BQP90时,BPBQ解方程4t2t,得t(如图4)图3 图4 图5(3)如图5,设PQ的中点为G,当点G恰为MN的中点时,MQNP作QEy轴于E,作NFx轴于F,作QHx轴于H,那么MQENPF由已知条件,可得P(t1, 0),Q(3t,t)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年炼油工艺实操技能高级考试模拟题及解析
- 2025年数据分析实战技能进阶教程与习题集
- 2025年大学英语四六级考试备考策略与技巧大全
- 2025年金融行业客户经理招聘面试模拟题及解析
- 真菌荧光染色课件
- 2025年电子商务网络工程师面试模拟题与答案详解
- 真空基础知识培训课件
- 2025年特种定制电源项目申请报告模范
- 2025年特种作业类特种设备作业-起重机指挥Q1参考题库含答案解析
- 2025年特种作业类危险化学品安全作业生产经营从业-加氢工艺作业参考题库含答案解析
- 空管招聘面试题及答案
- 物流投标流程管理制度
- 广东省高州市全域土地综合整治项目(一期)可行性研究报告
- 创伤中心各种管理制度
- 期货实物交割管理制度
- 配送企业配送协议书
- 人工智能及机器人课件
- 2024年注会考试《税法》真题及答案
- 2025年公共行政管理理论知识考试卷及答案
- 2025年地址标签纸项目市场调查研究报告
- 智能计算系统概述
评论
0/150
提交评论