


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理小论文勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a+b=c 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a+b=c的正整数组(a,b,c)。(3,4,5)就是勾股数。勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a+b=c这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a+b=c。”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。中国记载勾股定理的古籍有周髀算经,九章算术。九章算术中,赵爽描述此图:“勾股各自乘,并之为玄实。开方除之,即玄。案玄图有可以勾股相乘为朱实二,倍之为朱实四。以勾股之差自相乘为中黄实。加差实亦成玄实。以差实减玄实,半其余。以差为从法,开方除之,复得勾矣。加差于勾即股。” 用现代的数学语言描述就是黄实的面积等于大正方形的面积减去四个朱实的面积。2002年第24届国际数学家大会(ICM)的会标即为该图。加菲尔德证法在证出此结论5年后,成为美国第20任总统,所以人们又称其为“总统证法在直角梯形ABDEAEC=CDB=90AECCDB, , 青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再以盈补虚,分割
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电缆工考试题及答案
- 登高证考试题及答案
- (正式版)DB15∕T 3226-2023 《液化天然气单位产品电耗限额》
- 多平台用户信息整合工具
- 养老护理实操考试试题库及答案
- 大学民歌考试题及答案
- 文化传播推广效果承诺书5篇
- 往日的点烁星光の我愿意一生都在歌唱300字10篇
- 内部协作规定协议的指导
- 公司员工职业发展规划与指导手册
- 2025年新疆维吾尔自治区中考物理真题含答案
- 数字健康行为干预-第1篇-洞察及研究
- 2025至2030年中国核辐射探测器行业市场行情监测及前景战略研判报告
- 酒类小作坊管理制度
- 中国皮肤基底细胞癌诊疗指南2023
- 党性主题教育理论测试题及答案
- T/CECS 10348-2023一体化净水设备
- 骨科与麻醉科加速康复围手术期患者血液管理共识
- 打造卓越电信网络-优化技术引领业务增长
- 《医疗机构工作人员廉洁从业九项准则》解读
- 设备维护保养与维修操作手册
评论
0/150
提交评论