单片机课程设计(论文)-智能交通灯控制系统设计.doc_第1页
单片机课程设计(论文)-智能交通灯控制系统设计.doc_第2页
单片机课程设计(论文)-智能交通灯控制系统设计.doc_第3页
单片机课程设计(论文)-智能交通灯控制系统设计.doc_第4页
单片机课程设计(论文)-智能交通灯控制系统设计.doc_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基础课程设计(论文)智能交通灯控制系统设计学生姓名:指导教师:学生学号:专 业:电气工程及其自动化信息技术学院电气工程系2011年11月16摘要摘要交通控制系统是近现代社会随着物流、出行等交通发展产生的一套独特的公共管理系统。要保证高效安全的交通秩序,除了制定一系列的交通规则,还必须通过一定的科技手段加以实现。本文在对目前交通控制进行深入分析的基础上,运用检测传感、实时调整智能化控制的实现技术,将传感器检测、实时调整车辆通过时间的算法与单片机控制作用相结合,提出了基于单片机的交通控制系统设计方案。AT89C51单片机的交通等控制系统由AT89C51单片机、交通灯显示、LED倒计时、车流量检测及调整、违规检测、紧急处理、时间模式手动设置等模块组成。系统除基本交通灯功能外,还具有通过时间手动设置、可倒计时显示、急车强行通过、车流量检测及调整、交通异常状况判断及处理等相关功能。理论证明系统能够简单、经济、有效地疏通交通,提高交通路口的通过能力。本设计主要做了如下几方面的工作:一是确定系统交通控制的总体设计,包括,十字路口具体的通行禁行方案设计以及系统应拥有的各项功能,二是进行传感器的硬件电路、显示电路等的设计和基本功能要求。关键词:交通控制,传感检测,AT89C51,倒计时显示1目录目录摘 要11 绪论11.1 单片机交通控制系统的选题背景11.2单片机交通控制系统选题的现实意义11.3 单片机交通控制系统主要研究的内容22 单片机交通控制系统总体设计42.1单片机交通控制系统的通行方案设计42.2单片机交通控制系统的功能要求52.3单片机交通控制系统的基本构成及原理63 系统硬件电路的设计73.1系统硬件总电路构成及原理73.1.1系统硬件电路构成73.1.2系统工作原理83.2 AT89S51单片机简介83.2.1单片机的概述83.2.2 AT89C51芯片内部结构简介93.2.3 AT89C51单片机硬件结构113.2.5 AT89C51芯片最小系统123.3其它硬件介绍及连接133.3.1车流量检测电路及模拟133.3.2违规检测电路及模拟163.3.3八段LED数码管163.3.4其它器件184 系统软件程序的设计224.1程序主体设计流程224.2理论基础知识244.2.1定时器原理244.2.2软件延时原理244.2.3中断原理244.2.4消抖动程序25结 论26致 谢27附 录29附录1:智能交通灯控制程序:29附录2:总电路图401 绪论1.1 单片机交通控制系统的选题背景随着人口快速的增多,交通工具的爆炸性的发展,以及道路资源的有限性,交通控制就应运而生,在人类的生活、工作环境中,交通扮演着极其重要的角色,人们的出行都无时无刻与交通打着交道。自18世纪工业革命以来,工业发展带动整个交通运输的发展,从而催生了单独的交通控制学问与管理机构。交通控制系统是近代社会随着物流、出行等交通发展产生的一套独特的公共管理系统。要保证高效安全的交通秩序,除了制定一系列的交通规则,还必须通过一定的技术手段加以实现。现代人类科学技术,特别是电子科学技术的发展和熟悉能比较好的解决系列建立中软件方面要求的技术难题。目前,交通控制方面的研究能完全实现自动智能化,甚至将整个区域合成一个统一的系列范围,还能根据正常时段以及特定突发时段的情况进行科学的自动调整。交通对于社会的工业经济和人们的生活生产中有着十分重要的意义。随着单片机和传感技术的迅速发展,自动检测领域发生了巨大变化,交通自动检测控制方面的研究有了明显的进展,并且必将以其优异的性能价格比,逐步取代传统的交通控制措施。1.2单片机交通控制系统选题的现实意义城市道路交通自动控制系统的发展是以城市交通信号控制技术为前导,与汽车工业并行发展的。在其各个发展阶段,由于交通的各种矛盾不断出现,人们总是尽可能地把各个历史阶段当时的最新科技成果应用到交通自动控制中来,从而促进了交通自动控制技术的不断发展。早在1850年,城市交叉口处不断增长的交通就引发了人们对安全和拥堵的关注。世界上第一台交通自动信号灯的诞生,拉开了城市交通控制的序幕,1868年,英国工程师纳伊特在伦敦威斯特敏斯特街口安装了一台红绿两色的煤气照明灯,用来控制交叉路口马车的通行,但一次煤气爆炸事故致使这种交通信号灯几乎销声匿迹了近半个世纪。1914年及稍晚一些时候,美国的克利夫兰、纽约和芝加哥才重新出现了交通信号灯,它们采用电力驱动,与现在意义上的信号灯已经相差无几。1926年英国人第一次安装和使用自动化的控制器来控制交通信号灯,这是城市交通自动控制的起点。早期的交通信号灯使用“固定配时”方式实行自动控制,这种方式对于早期交通流量不大的情况曾起过一定的作用。但随着汽车工业的发展、交通流量增加、随机变化增强,采用以往那种单一模式的“固定配时”方式已不能满足客观需要,于是一种多时段多方案的信号控制器开始出现并逐步取代了传统的只有一种控制方案的控制器。 20世纪30年代初,美国最早开始用车辆感应式信号控制器,之后是英国,当时使用的车辆检测器是气动橡皮管检测器。车辆感应控制器的特点是它能根据检测器测量的交通流量来调整绿灯时间的长短,使绿灯时间更有效地被利用,减少车辆在交叉口的时间延误,比定时控制方式有更大的灵活性。车辆感应控制的这一特点刺激了车辆检测器技术的发展。继气动橡皮管式检测器之后,雷达、超声波、光电、地磁、电磁、微波、红外以及环形线圈等检测器相继问世。当今在城市道路交通自动控制、交通监测和交通数据采集系统中,应用最广的是环形线圈车辆检测器。超声波检测器主要在日本等少数国家得到广泛应用。计算机技术的出现为交通控制技术的发展注入了新的活力,更是实现了以一个城市或者更大地域,而非简单的一个路口的交通总体控制系统。1952年,美国科罗拉多州丹佛市首次利用模拟计算机和交通检测器实现了对交通信号机网的配时方案自动选择式信号灯控制,而加拿大多伦多市于1964年完成了计算机控制信号灯的实用化,建立了一套由IBM650型计算机控制的交通信号协调控制系统,成为世界上第一个具有电子数字计算机城市交通控制系统的城市。这是道路交通控制技术发展的里程碑。可以说,在近百年的发展中,道路交通信号控制系统经历了手动到自动,从固定配时到灵活配时,从无感应控制到有感应控制,从单点控制到干线控制,从区域控制到网络控制的长远过程。交通控制研究的发展,旨在解决人类交通因需求的增多而日益繁重带来的问题,局限于道路建设的暂时不足和交通工具的快速增长,就要使更多的车辆安全高效的利用有限的道路资源,避免因无序和抢行等无控制原因造成的不必要阻塞甚至瘫痪,另外,针对整个交通线路车辆的多少实时调整和转移多条线路的分流也十分必要。交通网络是城市的动脉,象征着一个城市的工业文明水平。交通关系着人们对于财产,安全和时间相关的利益。具有优良科学的交通控制技术对资源物流和人们出行都是十分有价值的,保证交通线路的畅通安全,才能保证出行舒畅,物流准时到位,甚至是生命通道的延伸。1.3 单片机交通控制系统主要研究的内容基于整个交通控制系统的发展情况,本设计主要进行如下方面的研究:用智能,集成,且功能强大的单片机芯片为控制中心,设计出一套十字路口的交通控制系统,以指挥该路口的实时通行状态。本设计主要做了如下几方面的工作:一是确定系统交通控制的总体设计,包括,十字路口具体的通行禁行方案设计以及系统应拥有的各项功能,在这里,本设计除了有信号灯状态控制能实现基本的交通功能,还增加了倒计时显示提示,基于实际情况,又要求了对车流量检测及自调整模拟功能,违规检测及处理,紧急状况处理和键盘课设置等强大功能。二是进行智能传感器的硬件电路,显示电路等的设计对各器件的选择及连接,大体分配各个器件以模块的基本功能要求。三是进行软件系统的设计,对于本系统,本人采用单片机语言汇编,对单片机内部构造和工作情况做了充足的研究,了解定时器,中断以及延时原理,总体上完成看软件的编写。2 单片机交通控制系统总体设计2.1单片机交通控制系统的通行方案设计设在十字路口,分为东西向和南北向,在任一时刻只有一个方向通行,另一方向禁行,持续一定时间,经过短暂的过渡时间,将通行禁行方向对换。其具体状态如下图所示。说明:黑色表示亮,白色表示灭。交通状态从状态1开始变换,直至状态6然后循环至状态1,周而复始,即如图2.1所示:图2.1 交通状态通过具体的路口交通灯状态的演示分析我们可以把这四个状态归纳如下:东西方向红灯灭,同时绿灯亮,南北方向黄灯灭,同时红灯亮,倒计时20秒。此状态下,东西向禁止通行,南北向允许通行。东西方向绿灯灭,同时黄灯亮,南北方向红灯亮,倒计时2秒。此状态下,除了已经正在通行中的其他所以车辆都需等待状态转换。南北方向红灯灭,同时绿灯亮,东西方向黄灯灭,同时红灯亮,倒计时20秒。此状态下,东西向允许通行,南北向禁止通行。南北方向绿灯灭,同时黄灯亮,东西方向红灯亮,倒计时2秒。此状态下,除了已经正在通行中的其他所以车辆都需等待状态转换。下面我们可以用图表表示灯状态和行止状态的关系如下:表2.1 交通状态及红绿灯状态状态1状态3状态4状态6东西向禁行等待变换通行等待变换南北向通行等待变换禁行等待变换东西红灯1100东西黄灯0001东西绿灯0010南北红灯0011南北绿灯1000南北黄灯0100东西南北四个路口均有红绿黄3灯和数码显示管2个,在任一个路口,遇红灯禁止通行,转绿灯允许通行,之后黄灯亮警告行止状态将变换。状态及红绿灯状态如表2.1所示。说明:0表示灭,1表示亮。2.2单片机交通控制系统的功能要求本设计能模拟基本的交通控制系统,用红绿黄灯表示禁行,通行和等待的信号发生,还能进行倒计时显示,车流量检测及调整,交通违规处理和紧急处理等功能。(1)倒计时显示倒计时显示可以提醒驾驶员在信号灯灯色发生改变的时间、在“停止”和“通过”两者间作出合适的选择。驾驶员和行人普遍都愿意选择有倒计时显示的信号控制方式,并且认为有倒计时显示的路口更安全。倒计时显示是用来减少驾驶员在信号灯色改变的关键时刻做出复杂判断的1种方法,它可以提醒驾驶员灯色发生改变的时间,帮助驾驶员在“停止”和“通过”两者间作出合适的选择 。(2)车流量检测及调整随着我国经济建设的蓬勃发展,城市人口和机动车拥有量在急剧增长,交通流量日益加大,交通拥挤堵塞现象日趋严重,交通事故时有发生。车辆检测器作为智能交通系统的基本组成部分,在智能交通系统中占有重要的地位。现阶段,车辆检测器检测方式有很多,各有其优缺点,如红外线检测器、地磁检测器、机械压电检测器,磁频检测器、波频检测器、视频检测器等。一般车流量检测器采用传感器+单片机+外围器件来实现。 而且,目前国内使用的红绿灯都是固定的红绿灯时间,并自动切换。红灯时间和绿灯时间,是根据道口东西向和南北向的车流量,利用统计方法确定的。交通警察不断观察十字路口的两个方向,根据车辆密度和流速决定是否切换红绿灯,以保证最佳的道路交通控制状态。(3)时间手动设置除系统根据车流量自动控制调整,也可以通过键盘进行手动设置,增加了人为的可控性,避免自动故障和意外发生,并再紧急状态下,可设置所有灯变为红灯。键盘是单片机系统中最常用的人机接口,一般情况下有独立式和行列式两种。前者软件编写简单,但在按键数量较多时特别浪费I0口资源,一般用于按键数量少的系统。后者适用于按键数量较多的场合,但是在单片机I0口资源相对较少而需要较多按键时,此方法仍不能满足设计要求。本系统要求的按键控制不多,且I0口足够,可直接采用独立式。(4)紧急处理交通路口出现紧急状况在所难免,如特大事件发生,救护车等急行车通过等,我们都必须尽量允许其畅通无阻,毕竟在这种情况下是分秒必争的,时时刻刻关系着公共财产安全,个人生死攸关等。由此在交通控制中增设禁停按键,就可达到想此目的。(5)违规检测交通规则必须人人遵守,但是违反规则,如闯红灯等,也时有发生,交警等交通管理人员虽然可以进行实时监管,但是耗费精力,在路口设置检测传感器就可以进行自动的警报提示。2.3单片机交通控制系统的基本构成及原理单片机设计交通灯控制系统,可用单片机直接控制信号灯的状态变化,基本上可以指挥交通的具体通行,当然,接入LED数码管就可以显示倒计时以提醒行使者,更具人性化。本系统在此基础上,加入了违规检测电路和车流量检测电路为单片机采集数据,单片机对此进行具体处理,及时调整控制指挥,为了超越视觉指挥的局限性,同时接上蜂鸣器,在听觉上加强了指挥提醒作用。单片机蜂鸣器按键控制红黄绿信号灯车流量检测电路最小系统外围接口电路8段LED数码管显示图2.2 系统的总体框图据此,本设计系统以单片机为控制核心,连接成最小系统,由车流量检测模块,违规检测模块,和按键设置模块等产生输入,信号灯状态模块,LED倒计时模块和蜂鸣器状态模块接受输出。系统的总体框图如上所示。键盘设置模块对系统输入模式选择及具体通行时间设置的信号,系统进入正常工作状态,执行交通灯状态显示控制,同时将时间数据倒计时输入到LED数码管上实时显示。在此过程中还要实时捕捉违规检测和紧急按键信号,以达到对异常状态进行实时控制的目的。急停按键和违规检测随时调用中断。在模式选择上,若为自动模式,将不断调用车流量检测模块对车流量进行检测统计,到达一定时间将修正通行时间一满足不同路况的需要。3 系统硬件电路的设计3.1系统硬件总电路构成及原理实现本设计要求的具体功能,可以选用AT89C51单片机及外围器件构成最小控制系统,12个发光二极管分成4组红绿黄三色灯构成信号灯指示模块,8个LED东西南北各两个构成倒计时显示模块,车流量检测传感器采集流量数据,光敏传感器捕获违规信号,若干按键组成时间设置和模式选择按钮和紧急按钮等,以及用1个蜂鸣器进行报警。3.1.1系统硬件电路构成本系统以单片机为核心,组成一个集车流量采集、处理、自动控制为一身的闭环控制系统。系统硬件电路由车流量检测电路、单片机、违规检测电路,状态灯,LED显示,按键,蜂鸣器组成。其具体的硬件电路总图如图3.1所示: 图3.1 总体设计电路图其中P0,P2,用于送显两片LED数码管,P1用于控制红绿黄发光二极管,XTAL1和XTAL2接入晶振时钟电路,RESET引脚接上复位电路,P3.3即INT1接违规检测电路和P3.2即INT0接紧停东西时间设置键J,P0.6,P0.7接车流量检测电路,P3.6接南北时间设置键S,P3.7接自动模式选择返回键F,P3.4接蜂鸣器。3.1.2系统工作原理系统上电或手动复位之后,系统等待模式选择设置键按下,模式分两种:红绿灯时间自动和红绿灯时间设置。若此时F键按下,则设置为自动模式,若此时按下的是S键,则设置为时间设置模式,依次按S若干次,J键若干次可设置好两个方向的红绿灯时间,再按F键确认。其实这个过程就是将存储时间值的寄存器进行设置,以及标志是否要进行车流量检测及调整。接下来,系统必须先显示状态灯及LED数码管,将状态码值送显P1口,将要显示的时间值送显P0口和用P2口来选通LED数码管的显示导通,在此同时以50ms为周期,用软件方法计时1秒,到达1s就要将时间值减1,刷新LED数码管。时间到达一个状态所要全部时间,则要进行下一状态判断及衔接,并装入次状态的相应状态码值以及时间值,当然,还要开启两个外部中断,其一为违规信号或禁停信号输入,一旦信号有效,中断开始,进入中断服务子程序,开启蜂鸣器禁止全部通行,当按下F键,中断结束返回。其二为车流量检测信号输入,若检测到车辆经过,进入相应的中断子程序,将存储车流量的计数器加1,然后中断结束返回。每满一个状态循环周期,若为自动模式,则须将检测到的车流量数据处理一次,判断两个方向的交通轻重缓急状况,再调整下次状态循环的红绿灯时间,以达到自动控制的目的。3.2 AT89SC51单片机简介3.2.1单片机的概述单片微型计算机简称单片机,又称微控制器,嵌入式微控制器等,属于第四代电子计算机。它把中央处理器、存储器、输入/输出接口电路以及定时器/计数器集成在一块芯片上,从而具有体积小、功耗低、价格低廉、抗干扰能力强且可靠性高等特点,因此,适合应用于工业过程控制、智能仪器仪表和测控系统的前端装置。正是由于这一原因,国际上逐渐采用微控制器(MCU)代替单片微型计算机(SCM)这一名称。“微控制器”更能反映单片机的本质,但是由于单片机这个名称已经为国内大多数人所接受,所以仍沿用“单片机”这一名称。单片机的主要特点有:(1)具有优异的性能价格比。(2)集成度高、体积小、可靠性高。(3)控制功能强。(4)低电压,低功耗。AT89C51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4k bytes的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。它集Flash程序存储器 既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片芯片中,ATMEL公司的功能强大,低价位AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。3.2.2 AT89C51芯片内部结构简介 中央处理器:中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。数据存储器(内部RAM):数据存储器用于存放变化的数据。AT89S51中数据存储器的地址空间为256个RAM单元,但其中能作为数据存储器供用户使用的仅有前面128个,后128个被专用寄存器占用。程序存储器(内部ROM):程序存储器用于存放程序和固定不变的常数等。通常采用只读存储器,且其又多种类型,在89系列单片机中全部采用闪存。AT89S51内部配置了4KB闪存。定时/计数器(ROM): 定时/计数器用于实现定时和计数功能。AT89S51共有2个16位定时/计数器。并行输入输出(I/O)口:8051共有4组8位I/O口(P0、 P1、P2或P3),用于对外部数据的传输。每个口都由1个锁存器和一个驱动器组成。它们主要用于实现与外部设备中数据的并行输入与输出,有些I/O口还有其他功能。全双工串行口:A89S51内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。时钟电路:时钟电路的作用是产生单片机工作所需要的时钟脉冲序列。中断系统:中断系统的作用主要是对外部或内部的终端请求进行管理与处理。图3.2 AT89S51系列单片机的内部结构示意图 AT89S51共有5个中断源,其中有2个外部中断源和3个内部中断源。3.2.3 AT89C51单片机硬件结构AT89C51是一种带4K字节闪存可编程可擦除只读存储器(FPEROMFlash Programmable and Erasable Read Only Memory)的单片机芯片,它采用静态CMOS 工艺制造8位微处理器,最高工作频率位24MHZ。AT89C51外形及引脚排列如图3.3所示: 图3.3 AT89C51的管脚图3.2.4管脚说明 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。 ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。 PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次PSEN有效。但在访问外部数据存储器时,这两次有效的PSEN信号将不出现。 EA/VPP:当EA保持低电平时,则在此期间外部程序存储(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,EA将内部锁定为RESET;当EA端保持高电平时,此间内部程序存储器。XTAL1和XTAL2:反向振荡放大器的输入及内部时钟工作电路的输入。 3.2.5 AT89C51芯片最小系统一个最简单的单片机系统包括晶振、复位、电源、系统的输入控制、输出显示,以及其他外围模块(如通信、数据采集等)。(1)时钟电路首先介绍一下单片机的晶振电路,即时钟电路。单片机的工作流程,就是在系统时钟的作用下,一条一条地执行存储器中的程序。单片机的时钟电路由外接的一只晶振和两只起振电容,以及单片机内部的时钟电路组成,晶振的频率越高,单片机处理数据的速度越快,系统功耗也会相应增加,稳定性也会下降。单片机系统常用的晶振频率有6MHz、110592MHz、12MHz、本系统采用110592MHz晶振,电容选22pF或30pF均可。(2)复位电路系统刚上电时,单片机内部的程序还没有开始执行,需要一段准备时间,也就是复位时间。一个稳定的单片机系统必须设计复位电路。当程序跑飞或死机时,也需要进行系统复位。复位电路有很多种,有上电复位,手动复位等。 (3)EA脚的功能及接法单片机的EA脚控制程序从内部存储器还是从外部存储器读取程序。由于现在单片机内部的flash容量都很大,因此基本都是从内部的存储器读取程序,即不需要外接ROM来存储程序,因此,EA脚必须接高电平。本设计中复位方式采用上电按键手动复位方式,时钟采用内部时钟。如下图3.4所示。图3.4 本系统复位与时钟方式3.3其它硬件介绍及连接3.3.1车流量检测电路及模拟如何判断两路口车辆的状况呢?我们要设计一套科学检测车流量而自动调整绿灯放行时间( 需设定上、下限) 的控制系统,这样无疑会大大提高车辆通过率, 有效缓解交通压力。我们在每车道车辆等待线的前方都安装一个霍尔车辆检测传感器, 当有一辆车通过时就会使霍尔开关型传感器的磁场发生变化, 而产生一个脉冲电平, 脉冲电平送给单片机的计数器处理, 给单片机的计数器定一个初值, 用来判断各方向车辆状况。比如: 20秒内可以通过的车辆为20辆, 当20秒内南往北方向车辆通过车辆达不到20辆时, 判断该方向为少车, 当20秒内北往南方向车辆通过车辆也达不到20 辆时, 判断该方向也为少车, 下一次通行仍为20秒, 当20秒时间内南往北或北往南任意一个方向通过的车辆达20辆时证明该状态车辆较多, 下一次该方向绿灯放行时间改为40秒, 当40秒内通过的车辆数达45辆时车辆判断为拥挤, 下一次绿灯放行时间改仍为40秒, 当40秒车辆上通过车辆达不到45辆时, 判断为少车, 下次绿灯放行时间改为20秒, 依此类推。绿灯下限时间为20秒, 上限值为40秒, 初始时间为20秒。这样检测, 某次可能不准确, 但下次肯定能弥补回来, 累积计算是很准确的, 这就是人们常说的模糊控制”。因为路上的车不可能突然增多, 塞车都有一个累积过程。这样控制可以把不断增多的车辆一步一步消化, 虽然最后由于每个路口的绿灯放行时间延长而使等候的时间变长, 但比塞车等候的时间短得多。本系统的特点是成本低, 控制准确。图3.5 十字路口车辆通行顺序十字路口车辆通行顺序由于南往北, 北往南时间显示相同, 所以只要一个方向多车, 下次时间就要加长东往西,西往东也一样。A1104开关型霍尔的工作原理霍尔传感器的外形图和与磁场的作用关系。磁钢用来提供霍尔能感应的磁场,当霍尔元件以切割磁力线的方式相对磁钢运动时,在霍尔输出端口就会有电压输出,所以霍尔传感器和磁钢需要配对使用。在非磁材料的圆盘边上粘贴一块磁钢,霍尔传感器固定在圆盘外缘附近。圆盘每转动一圈,霍尔传感器便输出一个脉冲。通过单片机测量产生脉冲的频率,就可以得出圆盘的转速。同样道理,根据圆盘(车轮)的转速,再结合圆盘的周长就是计算出物体的位移。如果要增加测量位移的精度,可以在圆盘(车轮)上多增加几个磁钢。车流量检测传感器可对单片机控制系统提供实时数据,系统对所获数据进行模糊处理。实现红绿灯模糊控制必须解决对当前十字路口的交通状况的检测,并完成如下工作:1.输入量的采集,系统采集两个输入量,即两个方向的车流量。2.输出量的确认,即红绿灯时间值。3.设计将输入映照到输出的模糊规则。4.决定被激活模糊规则的组合方式和清晰处理,生成精确的输出控制信号。为了采集上述数据,在十字路口的四侧共设置2个传感器。分别检测两个方向的车流量,车流量检测不是最终目的,在每半个循环周期,系统会检测到两个方向的车流量数据,除以时间,那么就可以得到单位时间的车流量,然后比较两个方向单位时间车流量多少,以确定下一次循环红绿灯时间,达到调整的目的。 任何非电量只要能转换成位移量的变化,均可利用霍尔式位移传感器的原理变换成霍尔电势。霍尔式压力传感器就是其中的一种,如图2-3a所示。它首先由弹性元件(可以是波登管或膜盒)将被测压力变换成位移,由于霍尔元件固定在弹性元件的自由端上,因此弹性元件产生位移时将带动霍尔元件,使它在线性变化的磁场中移动,从而输出霍尔电势。具体时间看表3.1:表 3.1 显示时间选择车辆情况本次该方向通行时间下次表该方向通行时间本次该方向通行时间本次该方向通行时间南往北少车,北往南少车20秒20秒40秒20秒南往北少车,北往南多车20秒40秒40秒40秒南往北多车,北往南少车20秒40秒40秒40秒南往北多车,北往南多车20秒40秒40秒40秒东往西少车,西往东少车20秒20秒40秒20秒东往西少车,西往东多车20秒40秒40秒40秒东往西多车,西往东少车20秒40秒40秒40秒东往西多车,西往东多车20秒40秒40秒40秒车流量检测是用外部中断引脚P06,P07捕获到一个低电平,则进入相应的中断服务子程序,在子程序中,用R5计南北向车流量,用R6计东西向车流量,设车向标志位为01H,判断车向. 根据红绿灯时间调整原理,一个周期下来,R5,R6中分别存储着南北,东西的车流量,接下来求单位时间车流量,此时南北向时间,东西向时间分别存储在R0,R1中,则两个方向的流量比例为(R5/R0)/(R6/R1)=(R5*R1)(R6*R0),显然该比例是1左右带小数的值,然而单片机程序中只取整数,重要的数据信息就会丢失,所以本设计中首先将(R5*R1)乘以10,比例就变为10左右的值。将该比例值放在A,然后进行时间调整。由于受到多方面的限制,时间调整在此只划定3个范围。比例0到0.7为一个范围,0.8到1.5为一个范围,1.5以上为一个范围。第一范围显然表明东西向交通严重,应将时间调长;第二范围表明两向相当,可设置一样的时间,第三范围表明南北向交通严重,应将该向时间调长。具体设置如下表3.2表3.2 比例及调整时间南北与东西向比例00.70.81.51.5及以上调整南北向时间202040调整东西向时间402020由表可知,对应的时间调整也只有三种,分别是20,40;20,20;40,20.显然在实际应用中这样简单的处理难以尽如人意,但在此处,本设计只是模拟大致的调整过程3.3.2违规检测电路及模拟在红灯和黄灯期间,车辆是禁行的,为了对那些违反规则的车辆进行检测,可使用超声波车辆传感器。但是,用于受到条件的限制,本系统设计中只是使用了普通光敏二极管。图3.6 违规检测电路其基本设计思想是:将光敏二极管放在停车线上,当车辆行驶过将光敏二极管遮住,这样,光敏二极管就不导通,单片机检测到这一信号执行警报操作。违规检测电路如下图3.5所示。但是除了使用光敏二极管,还需使用三极管,三极管的型号是9031.由于普通光敏二极管的开关特性不太好,所以设计在电路中加入了三极管作为开关。由于普通光敏二极管在导通的情况下的电阻都能达到0.5-1K,所以在设计中将光敏二极管直接连到了电源上。同时三极管还可以起到一定的隔直作用。当光敏二极管关闭时,三极管的基极为低电平,基极与发射基之间的电压为零,三极管关断,检测口的电压为高电平。同理,当光敏二极管导通时,三极管的基极电压为高,基极与发射极之间的电平为高,三极管导通,检测口的电压为低电平。基于此就可以检测是否有违规车辆了。3.3.3八段LED数码管LED(Light Emitting Diode),发光二极管,它是一种固态的半导体器件,可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由三部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子,中间通常是1至5个周期的量子阱。当电流通过导线作用于这个晶片的时候,电子和空穴就会被推向量子阱,在量子阱内电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 LED显示屏作为大型显示设备的一种,具有亮度高、价格低、寿命长、维护简便等优点。LED数码管的结构简单,分为七段和八段两种形式,也有共阳和共阴之分。以八段共阴管为例,它有8个发光二极管(比七段多一个发光二极管,用来显示sP,即点),每个发光二极管的阴极连在一起。这样,一个LED数码管就有I根位选线和8根段选线,要想显示一个数值,就要分别对它们的高低电平来加以控制。为方便起见,本文主要讨论共阴八段LED数码显示管,其他类形的显示管与其类似。图3.7 LED数码管LED 灯的显示原理:通过同名管脚上所加电平的高低来控制发光二极管是否点亮而显示不同的字形,如 dp,g,f,e,d,c,b,a全亮显示为8。采用共阴极连接:表3.3 驱动代码表显示数值a b c d e f g dop 驱动代码(16进制)01 1 1 1 1 1 1 1 0FCH1 0 0 0 0 0 1 1 060H2 1 1 0 1 1 0 1 00DAH3 1 1 1 1 0 0 1 00F2H4 0 1 1 0 0 1 1 066H5 1 0 1 1 0 1 1 00B6H6 1 0 1 1 1 1 1 00BEH7 1 1 1 0 0 0 0 00E0H8 1 1 1 1 1 1 1 00FEH9 1 1 1 1 0 1 1 00F6H相应在程序软件上,可以通过调用程序给定的秒值经过特定计算算出需要显示的个位和十位,然后用DPTR调取LEDMAP的代码。LED8段数码管的设置为每个方位上的一对2为显示器。四个方位上总共用8个LED接在单片机的IO口上。虽然路口不一样,但是显示的时间在数字上是一样的,所以两边连接的IO口是对称的。因为输出口较少的原因,所以每个十位,个位的数据的传输必须采用动态扫描的方式,因为人眼的视觉原因,人们会认为是同时点亮的.下面我们用这种方法显示交通灯的时间,南北方向要显示20秒,东西方向要显示25秒,那么我们先给P0口送2的共阴极码即5BH,让第一位2要显示的位码GND段为低电平,其它七位的控制端都接高电平,那么第一位就显示2,其它七位不亮。让其显示1MS后再给P0口送0的共阴极码即3FH,让第二位要显示0的位码GND段为低电平,其它七位的控制端都接高电平,那么第二位就显示0,其它七位不亮。依此类推分别送完第一位2,第二位0,第三位2,第四位5每一位点亮1MS一个扫描周期为8MS,一秒时间就要扫描125次3.3.4其它器件(1)发光二极管根据本设计的特点,红绿灯的显示不可少,红绿灯的显示采用普通的发光二极管。每个方向上设置红绿黄灯,总共4组。如果东西红灯亮,那南北方向就是绿灯亮,反之亦然,所以在硬件上连接图上也是对称分布的,如下图3.8所示。图3.8 信号灯的连接在本设计中,实际控制的灯只有6个,即:东西红灯,东西绿灯,东西黄灯,南北红灯,南北绿灯,南北黄灯,其中均是低电平有效。共有4钟状态:东西红灯亮,南北绿灯亮(11011101/DDH);东西红灯亮,南北黄灯亮(10111101/BDH);东西绿灯亮,南北红灯亮(11101101/EDH);东西黄灯亮,南北红灯亮(11100111/E7H)。括号中是P1端口8个引脚值P1.7,P1.6,P1.5,P1.4,P1.3,P1.2,P1.1,P1.0以及对应的十六进制码。在用于显示发光二极管时,直接由MOV指令将十六进制码送入P1口。刚才的4个状态是依次变换的,这就要涉及到状态的判断和衔接了。先把P1端口的值与所有的4个状态码比较,若相同则判断成功当前状态,再把下一状态的状态码送显P1即可。(2)蜂鸣器本设计采用一般蜂鸣器,蜂鸣器使用PNP三极管进行驱动控制,当连接到单片机上的引脚输出为低电平,PNP导通,蜂鸣器蜂鸣;当连接到单片机上的引脚输出高电平时,PNP截止,蜂鸣器停止蜂鸣。如下图3.9所示805 1图3.9 蜂鸣器的连接紧停按键和违规信号传感器连接到外部中断引脚INT1,P3.6捕获到一个低电平,则进入该中断,中断程序中先把蜂鸣器P3.7端口置0,启动蜂鸣。并且等待恢复键F键按下,然后关闭蜂鸣返回。(3)按键控制本设计设置了有3个键:S键,J键,F键。每个按键一端接地,另一端接上拉电阻。低电平有效,当按键按下端口接地,单片机捕获到低电平,从而知道相应的输入信息。如下图3.10所示图3.10 按键示意图首先程序不断扫描模式设置键,分别记为:S键,J键,F键,低电平有效,按键顺序是指定的,若直接按F键,则为自动调整模式,然后进入下一程序;若先按S键,再按J键,F键则为设置时间模式,然后进入下一程序。程序的开始要判断是否有键按下,可以不断将S键值和F键值相与,与值为1则表示没有键按下,为0则表示有键按下。 接下来要判断具体是那个键,若为F键,则将自动标志位置1,进入下一程序,否则为S键,则表示设置南北绿灯时间,用R0存值,按1下加1,同时还需判断此时J键是否按下,若按下,则表示南北绿灯时间设置完毕,开始设置东西绿灯时间,用R1存值,同样按1下加1 ,同时判断此时F键是否按下,若按下,则表示时间设置完毕,进入下一程序。在这个过程中,S,J键的计数是循环的,从初值20开始,加到40则循环回到20。 (4) 电源电路设计由于单片机工作时需要的+5V电压,所以在设计电源电路时,需要一个电子元件能提供+5V电压,由于7805能够提供5V电压的三端稳压电源,在实际的电路控制中应用其作为电源电路较为广泛,在普通的电子元器件商场都有销售易于购买,并且技术相对成熟.7805一脚为电源输入端,二脚为公共接地端,三脚即为我们所需要的+5V电压输出端.本文采用最典型的7805提供电压的电路,即在7805的1脚和公共接地端(即2脚)之间接入0.3F的电容,在公共接地端和三脚+5V电压输出端之间接入0.1F的电容. 图3.11 +5V电源电路(5)7448七段显示译码器7448七段显示译码器输出高电平有效,用以驱动共阴极显示器。该集成显示译码器设有多个辅助控制端,以增强器件的功能,可将单片机输出的四位二进制数转换成10进制数与七段数码管显示对应,用于显示09的数字。 图3.12 7448芯片4 系统软件程序的设计4.1程序主体设计流程全部控制程序实际上分为若干模块:键盘设置处理程序,状态灯控制程序,LED显示程序,消抖动延时程序,次状态判断及处理程序,紧停或违规判断程序,中断服务子程序,车流量计数程序,红绿灯时间调整程序等。整个软件程序方面主要分两大部分:按键处理程序和50ms扫描程序。流程图如图4.1所示。图4.1 系统总流程图首先是按键处理程序,AT89C51通过对IO扫描,确定是否有键按下,再判断具体是那个键按下,根据键值跳转到按键处理程序。按键处理结果可设置两种工作模式:红绿灯时间设置模式和红绿灯时间自动模式,次程序相当于系统的模式设置,若想重新设置则要按下复位键。设置过后进入50ms扫描程序。50ms扫描程序开始后,先刷新显示模块,若为自动模式则接下来要计数车流量,然后扫描紧停信号和违规信号,若捕获则调用中断,中断服务子程序主要启动蜂鸣器,直至恢复键按下。50ms已到则重新扫描。扫描20次之后计时到达1s则时间数据减1,在显示模块中修改显示缓冲区内容。在半个状态对换时,车流量计数程序在一个状态变换循环先后计数两个方向的车流量,然后调用红绿灯时间调整程序,更新红绿灯时间。当前状态时间已到,则判断次状态装入相应数据,然后进入下一状态。4.2理论基础知识4.2.1定时器原理定时器工作的基本原理其实就是给初值,让它不断加1直至减完为模值,这个初值是送到TH和TL中的。它是以加法记数的,并能从全1到全0时自动产生溢出中断请求。因此,我们可以把计数器记满为零所需的计数值,即所要求的计数值设定为C,把计数初值设定为TC 可得到如下计算通式:TC=M-C式中,M为计数器模值。计数值并不是目的,目的是时间值,设计1次的时间,即定时器计数脉冲的周期为T0,它是单片机系统主频周期的12倍,设要求的时间值为T,则有C=TT0。计算通式变为:T=(MTC)T0模值和计数器工作方式有关。在方式0时M为8192;在方式1时M的值为65536;在方式2和3为256。就此可以算出各种方式的最大延时。如单片机的主脉冲频率为12MHZ,经过12分频后,若采用方式最大延时只有8.129毫秒,采用方式最大延时也只有65.536毫秒。这就是为什么扫描周期为50ms的原因,若使用软件则会耽搁程序流程,显然不可行。相反,时间计时方面却不可能只用计数器,因为显然秒钟已经超过了计数器的最大定时间,所以我们还必须采用定时器和软件相结合的办法才能解决这个问题。4.2.2软件延时原理MCS-51的工作频率为12MHZ,机器周期与主频有关,机器周期是主频的12倍,所以一个机器周期的时间为12*(1/12MHZ)=1us。我们可以知道具体每条指令的周期数,这样我们就可以通过指令的执行条数来确定1秒的时间,但同时由于单片机的运行速度很快其他的指令执行时间可以忽略不计。我们设定一个初值为20的软件计数器和使T0定时50毫秒。这样每当T0到50毫秒时CPU就响应它的溢出中断请求,进入他的中断服务子程序。在中断服务子程序中,CPU先使软件计数器减,然后判断它是否为零。为零表示秒已到。设定定时器需要定时50毫秒,故T0必须工作于方式1。要求初值:TC=M-T*T0=216-50ms/1us=15536=3CBOH. 4.2.3中断原理本系统主要使用了外部中断,中断信号有引脚INT0和INT1输入,低电平有效,CPU每个时钟周期都会检测INT0和INT1上的信号,8051允许外部中断以电平方式或负边沿方式两种中断方式输入中断请求信号,可由用户通过设置TCON中IT0和IT1位的状态来实现。以IT0为例,IT0=0,为电平触发方式,IT0=1,为负边沿触发方式,本设计采用电平方式,IE0为其中断标志位,有中断信号则置位,中断服务子程序响应后,IE0自动清零。IE中的EA为允许中断的总控制位,为1开启,EX0为外部中断允许控制位,为1开启。在优先级的允许下,一旦有外部中断信号产生,单片机CPU首先保护断点,PC值进栈

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论