




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科毕业设计(2009届)题 目简易2通道虚拟示波器上位机软件设计学 院通信工程学院专 业通信工程班 级040814学 号04081419学生姓名李强指导教师 骆懿完成日期2009年5月杭州电子科技大学本科毕业设计摘要虚拟仪器技术是最近二十年发展的一项新技术,其核心思想是“软件就是仪器”。虚拟仪器利用PC强大的数据处理能力,由用户根据软件定义的界面来操作计算机,完成对被测信号的采集、分析、处理、判断及显示等一系列功能,从而实现仪器的功能。 示波器是在科学研究和高等院校中应用广泛的一种通用仪器。目前研制一种能够满足高等院校科研和教学要求的示波器是非常必要的。虚拟示波器是虚拟仪器技术的一种具体应用。该虚拟仪器基于计算机平台,将虚拟仪器硬件和软件紧密结合,实现比传统仪器更强大的功能。本文介绍了示波器和虚拟仪器的原理与发展。在此基础上,提出了基于LabVIEW的虚拟示波器设计方案。本文介绍了虚拟示波器各模块功能,并给出了具体的设计方法和测试结果。关键词: LabVIEW 虚拟示波器 RS-232CABSTRACTThe virtual instrument technology is a new technology which developed in recent twenty years .The core idea of virtual instruments is The software is the instrument. The virtual instrument utilizes the PCs strong data processing ability, operates the computer according to the interface that the software defined, completes a series of function of the signal collecting, analyzing, processing, judging and display, and realizes the function of the instrument.Oscilloscope is a kind of general instrument extensively used in science research and Universities. It is very necessary to develop a kind of oscilloscope to meet the requirement of scientific research and teaching in universities. The virtual oscilloscope is a kind of application of VI technology. This VI is based on computer. It combines the virtual instruments hardware with software close to realize the stronger function than traditional instrument.This thesis introduced the principle and the development of the oscilloscope and virtual instrument. On this basis, this thesis puts forward the design of the virtual oscilloscope scheme based on LabVIEW. This thesis presents a virtual oscilloscope for the function of the module, and gives a specific design methods and text results.Key words:LabVIEW virtual oscilloscope RS-232C 杭州电子科技大学本科毕业设计目 录1 引 言12 虚拟仪器的概述22.1 虚拟仪器概念22.2 虚拟仪器的系统构成22.2.1 虚拟仪器系统的硬件构成42.2.2 虚拟仪器系统的软件构成52.3 虚拟仪器的发展过程62.4 虚拟仪器的特点和优势62.5 虚拟仪器的发展趋势73 虚拟示波器原理83.1 示波器的基本原理83.1.1 示波器波形显示原理83.2 数字示波器的基本原理93.2.1 数字示波器基本原理93.2.2 数字示波器基本方框图93.3 虚拟示波器的工作原理104 虚拟仪器开发软件LabVIEW124.1 LabVIEW简介124.2 LabVIEW主要窗口124.3 LabVIEW优点155 串口通信协议165.1 串行系统165.2 串口硬件结构165.3 串口通信方法185.4 串口通信接线方法195.5 异步串口通信参数196 软件设计226.1 LabVIEW串口VI简介226.2 程序的流程图236.4 程序的程序框图设计246.5 前面板设计267 程序波形显示和保存288 总结和展望309 结束语31致谢32参考文献33杭州电子科技大学本科毕业设计1 引 言虚拟仪器是基于计算机的仪器,或者说虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。计算机和仪器的密切结合是目前仪器发展的一个重要方向。粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能。虚拟仪器主要是指这种方式而本课题是采用LabVIEW语言来实现的。LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。由于本设计是采用LabVIEW语言来进行虚拟示波器的设计,所以首先要学习LabVIEW语言编程,还要对虚拟示波器的设计原理进行研究。本文第二章介绍了虚拟仪器的概念;第三章介绍了虚拟示波器的基本概念;第四章介绍本设计的编程语言以及软件平台;第五章介绍了串口通信协议;第六章介绍了软件设计;第七章介绍了程序波形显示和保存文件。2 虚拟仪器的概述2.1 虚拟仪器概念虚拟仪器是指通过应用程序将计算机、软件的功能模块和仪器硬件结合起来,用户可以通过友好的图形界面(通常叫做虚拟前面板,简称前面板)来操作这台计算机就像在操作自己定义、自己设计的一台个人仪器一样,从而完成对被测信号的采集、分析、判断、显示、数字存储等。虚拟仪器以透明的方式,通过软件对数据的分析处理、表达以及图形化用户接口,把计算机资源(如微处理器、显示器等)和仪器硬件(如A/D、D/A、数字I/O、定时器、信号调理等)的测试能力和控制能力结合起来。虚拟一起突破了传统仪器以硬件为主体的模式,实际上使用者是在操作具有测试软件的电子计算机进行测量,犹如操作一台虚设的电子仪器。虚拟仪器技术的实质是充分利用最新的计算机技术来实现和扩展传统仪器的功能。软件是虚拟仪器的关键,当基本硬件确定以后,就可以通过不同的软件实现不同的功能。用户可以根据自己的需要,设计自己的仪器系统,满足多种多样的应用要求。利用计算机丰富的软、硬件资源,可以大大突破传统仪器的数据的分析、处理、表达、传递、存储等方面的限制,达到传统仪器无法比拟的效果。它不仅可以用于电子测量、测试、分析、计量等领域,而且还可以用于进行设备的监控以及工业过程自动化。虚拟仪器还可以广泛用于电力工程、物矿勘探、医疗、振动分析、声学分析、故障诊断及教学科研等多个方面。常见虚拟仪器方案如图2-1所示。图2-1常见虚拟仪器方案2.2 虚拟仪器的系统构成虚拟仪器由硬件设备与接口、设备驱动软件和虚拟仪器面板组成。其中,硬件设备与接口可以是各种以PC为基础的内置功能插卡、通用接口总线接口卡、串行口、VXI总线仪器接口等设备,或者是其它各种可程控的外置测试设备,设备驱动软件是直接控制各种硬件接口的驱动程序,虚拟仪器通过底层设备驱动软件与真实的仪器系统进行通讯,并以虚拟仪器面板的形式在计算机屏幕上显示与真实仪器面板操作元素相对应的各种控件。用户用鼠标操作虚拟仪器的面板就如同操作真实仪器一样真实与方便。目前,虚拟仪器的构成方式有以下几种:1. PC-DAQ插卡式的VI这种方式用数据采集卡配以计算机平台和虚拟仪器软件,便可构成各种数据采集和虚拟仪器系统。它充分利用了计算机的总线、机箱、电源以及软件的便利,其关键在于A/D转换技术。这种方式受PC机机箱、总线限制,存在电源功率不足,机箱内噪声电平较高、无屏障,插槽数目不多、尺寸较小等缺点。随着基于PC的工业控制计算机技术的发展,PC-DAQ方式存在的缺点已经和正在被克服。因个人计算机数目非常庞大,插卡式仪器价格便宜,因此其用途广泛,特别适用于工业测控现场、各种实验室和教学部门使用。2. 并行口式的VI最新发展的可连接到计算机并行口的测试装置,其硬件集成在一个采集盒里或探头上,软件装在计算机上,可以完成各种VI功能。它的最大好处是可以与笔记本计算机相连,方便野外作业,又可与台式PC相连,实现台式和便携式两用,非常方便。3. GPIB总线方式的VIGPIB(General Purpose Interface Bus)技术是IEEE488标准的VI早期的发展阶段。它的出现使电子测量由独立的单台的手工操作向大规模自动测试系统发展。典型的GPIB系统由一台PC机,一块GPIB接口卡和若干台GPIB仪器通过GPIB电缆连接而成。在标准情况下,一块GPIB接口卡可带多达14台的仪器,电缆长度可达20m。GPIB技术可以用计算机实现对仪器的操作和控制,代替传统的人工操作方式,很方便的把多台机器组合起来,形成大的自动测试系统。GPIB测试系统的结构和命令简单,造价较低,主要市场在台式仪器市场。适用于精确度要求高,但对计算机速率要求和总线控制实时性要求不高的场合应用。4. VXI总线方式的VI VXI总线是Vmebus extension for Instrumentation的缩写,是高速计算机总线VME在VI领域的扩展,有稳定的电源,强有力的冷却能力和严格的RFI/EMI屏蔽。由于它的标准开放,且具有结构紧凑、数据吞吐能力强、定时和同步精确、模块可重复利用、众多仪器厂家支持的优点,得到广泛的应用。经过多年的发展,VXI系统的组建和使用越来越方便,有其他仪器无法比拟的优势,适用于组建大、中规模自动测量系统以及对速度、精度要求高的场合,但VXI系统要求有专用的机箱、零槽管理器及嵌入式控制器,造价比较高。5. PXI总线形式的VIPXI总线是PCI extension for Instrumentation 的缩写,是PCI在VI领域的扩展。这种新型模块化仪器系统是在PCI总线内核技术上增加了成熟的技术规范和要求形成的,具有多板同步触发、精确定时的星形触发、相邻模块间高速通讯的局部总线以及高度的可扩展性等优点,适用于大型高精度集成系统。6. 网络接口方式的VI尽管Internet 技术最初并没有考虑如何将嵌入式智能仪器设备连接在一起,不过NI等公司已经开发了通过Web浏览器观测这些嵌入式仪器设备的产品,使人们可以通过Internet 操作仪器设备。根据虚拟仪器的特性,我们能够方便的将虚拟仪器组成计算机网络。利用计算机网络将分散在不同地理位置不同功能的设备联系在一起,使昂贵的硬件设备、软件在网络上得以共享,减少了设备重复投资。现在,有关MCN(Measurement and Control Networks )方面的标准正在积极进行,并取得一定的进展。由此可见,网络化虚拟仪器将具有广泛的应用前景。7. USB接口方式的VIUniversal Serial Bus(USB)因为其在PC机上的广泛使用、即插即用的易用性和USB2.0高达480Mbits/s的传输速率,逐渐的成为仪器控制的主流总线技术。现在计算机上的USB接口越来越多,也使得工程师可以很方便的将基于USB的测量仪器连接到整个系统中。但是USB在仪器控制方面上亦有一些缺点。比如说USB的排线没有工业标准的规格,在恶劣的环境下,可能造成数据的丢失,此外,USB对排线的距离也有一定的限制。无论哪种VI系统,都是将仪器硬件搭载到笔记本电脑,台式微机和工作站等各种计算机平台加上应用软件而构成的。2.2.1 虚拟仪器系统的硬件构成被测信号信号调制数据采集卡串行接口仪器/PLCVXI模块现场总线设备其他计算机硬件GPIB接口仪器GPIB接口卡LabVIEWLabWindows其他软件开发平台图2-2虚拟仪器硬件构成框图虚拟仪器的硬件系统一般分为计算机硬件平台和测控功能硬件,如图2-2所示。计算机硬件平台可以是各种类型的计算机,如台式计算机、便携式计算机、工作站、嵌入式计算机等。它管理着虚拟仪器的软件资源,是虚拟仪器的硬件基础。因此,计算机技术在显示、存储能力、处理器性能、网络、总线标准等方面的发展,导致了虚拟仪器系统的快速发展。按照测控功能硬件的不同,VI可分为DAQ、GPIB、VXI、PXI和串口总线五种标准体系结构,它们主要完成被测输入信号的采集、放大、模/数转换。2.2.2 虚拟仪器系统的软件构成测试软件是虚拟仪器的主心骨。NI公司在提出虚拟仪器概念并推出第一批实用成果时,就用软件就是仪器来表达虚拟仪器的特征,强调软件在虚拟仪器中的重要位置。NI公司从一开始就推出丰富而又简洁的虚拟仪器开发软件。使用者可以根据不同的测试任务,在虚拟仪器开发软件的提示下编制不同的测试软件,来实现当代科学技术复杂的测试任务。在虚拟仪器系统中用灵活强大的计算机软件代替传统仪器的某些硬件,特别是系统中应用计算机直接参与测试信号的产生和测量特性的分析,使仪器中的一些硬件甚至整个仪器从系统中消失,而由计算机的软硬件资源来完成它们的功能。虚拟仪器测试系统的软件主要分为以下四部分:仪器面板控制软件,数据分析处理软件,仪器驱动软件,通用I/O接口软件。1. 仪器面板控制软件 仪器面板控制软件即测试管理层,是用户与仪器之间交流信息的纽带。利用计算机强大的图形化编程环境,使用可视化的技术,从控制模块上选择你所需要的对象,放在虚拟仪器的前面板上。2. 数据分析处理软件 利用计算机强大的计算能力和虚拟仪器开发软件功能强大的函数库可以极大提高虚拟仪器系统的数据分析处理能力,节省开发时间。 3. 仪器驱动软件 虚拟仪器驱动程序是处理与特定仪器进行控制通信的一种软件。仪器驱动器与通信接口及使用开发环境相联系,它提供一种高级的、抽象的仪器映像,它还能提供特定的使用开发环境信息。仪器驱动器是虚拟仪器的核心,是用户完成对仪器硬件控制的纽带和桥梁。虚拟仪器驱动程序的核心是驱动程序函数/VI集,函数/VI是指组成驱动的模块化子程序。驱动程序一般分为两层,底层是仪器的基本操作,如初始化仪器配置仪器输入参数、收发数据、查看仪器状态等。高层是应用函数/VI层,它根据具体测量要求调用底层的函数/VI。 4. 通用I/O接口软件 在虚拟仪器系统中,I/O接口软件作为虚拟仪器系统软件结构中承上启下的一层,其模块化与标准化越来越重要。VXI总线即插即用联盟,为其制定了标准,提出了自底向上的I/O接口软件模型即VISA。作为通用I/O标准,VISA具有与仪器硬件接口无关性的特点, 即这种软件结构是面向器件功能而不是面向接口总线的。应用工程师为带GPIB接口仪器所写的软件,也可以于VXI系统或具有RS232接口的设备上,这样不但大大缩短了应用程序的开发周期,而且彻底改变了测试软件开发的方式和手段。2.3 虚拟仪器的发展过程1、GPIBVSIPXI总线方式(适合大型高精度集成系统)GPIB 于1978年问世,VXI于1987年问世,PXI于1997年问世。2、PC插卡并口式串口USB方式(适合于普及型的廉价系统,有广阔的应用发展前景)PC插卡式于80年代初问世,并行口方式于1995年问世,串口USB方式于1999年问世。综上所述,虚拟仪器的发展取决于三个重要因素。计算机是载体,软件是核心高质量的A/D采集卡及调理放大器是关键。2.4 虚拟仪器的特点和优势一台性能优良的虚拟仪器不仅可以实现传统仪器的大部分功能,而且在许多方面有传统仪器无法比拟的优点,如使用灵活方便、功能丰富、价格低廉、可一机多用、可重复开发等。与传统仪器相比虚拟仪器主要有以下几个优点:(1)融合了计算机强大的硬件资源,突破了传统仪器在数据处理、显示、存储等方面的限制,大大增强了传统仪器的功能。而且高性能处理器、高分辨率显示器、大容量硬盘等已成为虚拟仪器的标准配置。(2)利用计算机丰富的软件资源,一方面,实现了部分仪器硬件的软件话,节省了物质资源,增加了系统的灵活性;一方面,通过软件技术和相应的数值算法、实时、直接的对测量数据进行各种分析和处理;另一方面,通过图形用户界面(Graph User Interface)技术,真正做到界面友好,人机交互。(3)基于计算机总线和模块化仪器总线,使仪器的硬件实现了模块化、系列化,大大缩小了系统的尺寸,可方便的构建模块化仪器(Instrument on a Card)。(4)基于计算机网络技术和接口技术,使VI系统具有方便、灵活的互联能力,广泛支持诸如CAN,Field Bus,PROFIBUS等各种工业总线标准。因此,利用VI技术可方便的构建自动测试系统(ATS,Automatic Test System),实现测量、控制过程的网络化。(5)基于计算机的开放式标准体系结构。虚拟仪器的硬、软件都具有开放性、模块化、可重复使用及互换性等特点。因此,用户可以根据自己的需要选择不同厂家的产品,使仪器系统的开发更为灵活、效率更高,缩短了系统组建和维修的时间。表2-1是虚拟仪器与传统仪器的比较。表2-1 虚拟仪器与传统仪器的比较虚拟仪器传统仪器开放、灵活,可与计算机技术保持同步发展封闭性、仪器间相互配合较差关键是软件,系统性能升级方便,通过网络下载升级程序即可。关键是硬件,升级成本较高,且升级必须上门服务。价格低廉,仪器间资源可重复利用率高价格昂贵,仪器间一般无法相互利用用户可定义仪器功能只有厂家能定义仪器功能可以与网络及周边设备方便互连与其他设备仪器的连接十分有限软件使得开发和维护费用降至最低开发和维护开销高技术更新周期短(1-2年)技术更新周期长(5-10年)数据可编辑、存储、打印数据无法编辑2.5 虚拟仪器的发展趋势虚拟仪器正在继续迅速发展。它可以取代测量技术在传统领域的各类仪器。虚拟仪器在组成和改变仪器的功能和技术性能方面具有灵活性和经济性,因而特别适应于当代科学技术迅速发展和科学研究不断深化所提出的更高跟新的测量课题和测量需要。“没有测量就没有鉴别,科学技术就不能前进。”虚拟仪器将会在科学技术的各个领域得到广泛的应用。图形化编程平台的进一步发展和完善是虚拟仪器发展的一个重要方向。如何使用户进行少量的学习甚至不需要学习就可使用功能强大的虚拟仪器,如何使用构成简单的虚拟仪器系统并完成复杂的测试内容,如何帮助用户对测试结果进行分析和判断等内容,是虚拟仪器技术努力的方向。我国还基本处于传统仪器与计算机化仪器互相分离的状态,世界各大相关的产品商家都在向中国这个巨大的市场进军。结合我国的实际情况,我们必须走引进与自行开发相结合的道路。一方面,大力引进国外虚拟仪器方面的生产技术;另一方面,发展基于计算机的插卡式硬件模块为主的测控技术,发展图形化平台的软件产品,充分利用我们现有的计算机及测控技术硬件,缩短与国际先进水平的差距。VXI总线将成为未来虚拟仪器的理想硬件平台,这是由VXI总线的性能决定的;另一方面,基于PCI-DAQ的虚拟仪器系统由于性价比高、灵活性好而受到大多数用户的青睐,将得到高速的发展。随着计算机硬件、软件技术的迅速发展,虚拟仪器将向高性能、多功能、集成化、网络化方向发展。3 虚拟示波器原理3.1 示波器的基本原理示波器是利用电子射线的偏转,来显示电信号瞬时值图象(常成为时间波形)的一种仪器。它能快速的把肉眼不能直接看见的电信号的时变规律,以可见的形式,形象的显示出来。目前,示波器在信号测试、信号比较、逻辑分析等领域得到了广泛的应用。3.1.1 示波器波形显示原理在示波器的荧光屏上,显示电压波形的原理如下:被测电压是时间的函数,在直角坐标系统中,可以用的曲线表示。示波器的两副偏转板使电子束在两个互相垂直的方向偏转,这两个方向可以看成是坐标轴。因此,要在管子的荧光屏上显示被测电压的波形,就必须使射线沿水平方向的偏转同时间成正比,而在垂直方向同被测电压成正比(每一瞬间)。所以,锯齿波电压加到水平偏转板上,它迫使射线以恒定的速度从左向右沿水平方向偏转。并且很快的返回到起始位置。射线沿水平轴经过的距离跟时间成正比。被测电压加到垂直偏转板上,因而,每一瞬间射线的位置单值的对应于这一瞬间被测信号的值。在锯齿波电压作用期间,射线就绘出了被测信号的曲线,示波器波形显示原理如图3-1所示。图3-1 示波器波形显示原理以上图形是锯齿波的重复周期等于输入信号周期整数倍的情况(一倍),荧光屏上显示出的信号图形是稳定不动的。如果不是整数倍,则每次出现的信号波形就不会重合,图形将不断移动,不利于观测。为了保证锯齿波的周期等于输入信号的整数倍,示波器必须具有同步或触发电路。3.2 数字示波器的基本原理数字示波器用A/D变换器把模拟波形转换成数字信号,然后存储在半导体存储器RAM中,需要时,将RAM中存储内容调出,通过相应的D/A转换器,再恢复成模拟量显示在示波管屏幕上。在这种示波器中,信号处理功能和信号显示功能是分开的。其性能,包括精度和速度,完成取决于进行信号处理的A/D、D/A变换器和半导体存储器。3.2.1 数字示波器基本原理在数字示波器中,把输入的被测模拟信号先送至A/D转化器进行采样,量化和编码,成为数字“1”、“0”码,存储到RAM中,这个过程称为存储器的“写过程”。然后,再将这些“1”、“0”码从RAM中依次取出按顺序排列起来,经过D/A转换使其包络重现输入模拟信号,这就是“读过程”。在数字存储示波器中,采用适时采样方式,可观测单次信号;采用顺序采样或者随即采样方式,可观测重复信号。采样频率理论分析指出,为了正确的观测信号波形,只有恰当的选择采样频率才能用所得的样值脉冲序列恢复出原信号波形。采样频率过低会产生频谱重叠效应,造成波形失真,使示波器测量结果出现明显误差。采样定律证明,对于一个最高频率为的信号,当采样频率时,其采样后所得到的脉冲序列将包括原信号的全部信息。称为奈奎斯特频率。当采样频率等于输入信号频率时,显示波形的频率信息还能保留,但是幅度信息将大量损失。通过计算可以得到,当一个周期中采样点数N为4时,即采样频率时,失真波形的最大值是波形幅度的0.707,故数字示波器的等效带宽为。若采用正弦内插显示,等效带宽可达。3.2.2 数字示波器基本方框图数字存储示波器的基本方框图如图3-2所示。图3-2 数字存储示波器的基本方框图Y输入信号经衰减放大后送至A/D转换器,按“t/div”开关设定的采样频率下进行变换,从而得到一串数据流,在控制逻辑电路的作用下写入随即存储器RAM中。RAM的读写操作受R/W控制,当RAM的读写控制R/W=0时,RAM进行写操作;当R/W=1时,RAM进行读操作。RAM地址选择器在RAM进行写操作时,将写地址输出选做RAM地址;读操作时,则将读地址输出选做RAM地址。控制逻辑电路一旦接受到来自触发放大器的触发信号,就启动一次数据写入循环,产生写功能信号送至RAM读写控制,同时使写地址计数器计数。写地址计数器将顺序递增的写地址送至存储器,确保每组数据写入至相应的存储单元中去。不管数据用何种速度写入存储器,存储器中存储的各数据均不相关的以固定的速度不断读出,且显示时不产生闪烁。读出数据送至垂直D/A变换电路,用做示波器Y显示。同时一个以读出速率递增的计数器计数,输出送至水平D/A转换器,用做示波器X显示。晶体振荡器产生高精度、高稳定性的时钟。该时钟由分频电路产生与面板上“t/div”开关设置相对应的采样时钟,去控制A/D转换器和存储器写入。时基分频电路也产生该脉冲,供读地址计数器和显示地址计数器,以产生稳定阶梯扫描电压。3.3 虚拟示波器的工作原理 模拟信号经同轴电缆进入采集卡的输入通道,经过前置滤波电路、衰减电路、可变增益的放大电路,将信号处理成A/D转换器可以处理的标准电平,经过A/D采样量化转化成计算机可以处理的数字信号并缓存到卡上的存储器。其支持软件通过PC机的PCI总线接口控制模拟通道的阻抗匹配、放大器的增益选择、启动A/D转换及转换结束的识别,并将采集数据以DMA的方式传输到计算机内存,同时对数据信号进行分析处理、显示、存储及打印传输等。虚拟示波器是采用基于计算机的虚拟技术,用以模拟通用示波器的面板操作和处理功能,也就是使用个人计算机及接口电路来采集现场或实验室信号,并通过图形用户界面(GUI)来模仿示波器的操作面板,完成信号采集、调理、分析处理和显示输出等功能。我所设计的虚拟示波器,是在数据采集硬件的支持下,配备一定功能的软件,完成波形的存储、分析、显示等功能。一般测试仪器由信号采集、信号处理和结果显示三大部分组成,这三大部分均由硬件构成。虚拟示波器也是由这三大部分组成,但是除了信号采集部分是由硬件实现之外,其它两部分都是由软件实现。我所设计的虚拟示波器总体上包括数据采集、波形显示、参数测量、数据保存、数据回放等几大模块组成。 4 虚拟仪器开发软件LabVIEW4.1 LabVIEW简介LabVIEW是(实验室虚拟仪器工作平台)是一个程序开发环境。它类似于Visual Basic,Visual C+。但是LabVIEW的特点在于:它使用图形化编程语言G在流程图中创建源程序,而没有使用基于的文本语言来产生源程序代码。LabVIEW是一个多线程、最佳化的图形编译器,它能在最大程度上优化系统的性能。无论是使用基于计算机的插入式仪器设备,还是使用GPIB,VXI,Ethernet 接口或是串口的独立仪器设备,LabVIEW内置的驱动程序库和具有工业标准的设备驱动软件都可以对仪器系统进行全面的控制。LABVIEW的数据采集库包含了许多有关采集和生成数据的函数,它们与NI的插卡式或远程数据采集产品协同工作。数据采集卡是进行高速直接控制以及低速控制的理想设备。它能够为集成式测量方案提供功能强大且完备的测量分析库,这些软件库可以完成极限测试、频率分析、滤波及信号生成等任务。LabVIEW具有许多特性,能使测量和自动化应用方案完成适用于用户企业的生产经营,能将应用方案以网页的形式发表,或在互联网的应用程序间进行数据传递。LabVIEW拥有完整的Web服务器,可以随时发布测量结果。LabVIEW专业版开发系统包括应用程序生成器(Application Builder),可以创建并发布独立的可执行程序、共享库或动态连接库(DLL)。使用共享库可以使开发的应用程序代码进行重新使用。DLL提供最大的灵活性,可以将LabVIEW与其他开发工具如VB,VC和NI的Measurement Studio结合起来。LabVIEW应用程序生成器可以创建安装程序,以便在Windows环境中执行可运行程序。4.2 LabVIEW主要窗口所有的LabVIEW应用程序,即虚拟仪器(VI),它包括前面板(front panel)、流程图(block diagram)以及图标/连结器(icon/connector)三部分。前面板前面板是图形用户界面,也就是VI的虚拟仪器面板,如图4-1所示。这一界面上有用户输入和显示输出两类对象,具体表现有开关、旋钮、图形以及其他控制(control)和显示对象(indicator)。图1所示是一个随机信号发生和显示的简单VI是它的前面板,上面有一个显示对象,以曲线的方式显示了所产生的一系列随机数。还有一个控制对象开关,可以启动和停止工作。显然,并非简单地画两个控件就可以运行,在前面板后还有一个与之配套的流程图。图4-1随机信号发生器的前面板流程图流程图提供VI的图形化源程序。在流程图中对VI编程,以控制和操纵定义在前面板上的输入和输出功能。流程图中包括前面板上的控件的连线端子,还有一些前面板上没有,但编程必须有的东西,例如函数、结构和连线等。图4-2是与图4-1对应的流程图。我们可以看到流程图中包括了前面板上的开关和随机数显示器的连线端子,还有一个随机数发生器的函数及程序的循环结构。随机数发生器通过连线将产生的随机信号送到显示控件,为了使它持续工作下去,设置了一个While Loop循环,由开关控制这一循环的结束。图4-2随机信号发生器的流程图如果将VI与标准仪器相比较,那么前面板上的东西就是仪器面板上的东西,而流程图上的东西相当于仪器箱内的东西。在许多情况下,使用VI可以仿真标准仪器,不仅在屏幕上出现一个惟妙惟肖的标准仪器面板,而且其功能也与标准仪器相差无几。图标/连接器VI具有层次化和结构化的特征。一个VI可以作为子程序,这里称为子VI(subVI),被其他VI调用。图标与连接器在这里相当于图形化的参数。LabVIEW 具有三个可移动的图形化工具模板:工具模板( Tools Palette) 、控件模板(Controls Palette) 和功能模板(Function Palette) 。工具模板提供了用于图形操作的各种工具,比如定位、标注、断点、连线、文字注释等;控件模板提供了前面板编辑所需的图像图标、一些特殊的图形功能模板则提供了一些基本的数学函数和其他功能函数。这三个模板是LabVIEW 编程的主要工具。工具模板(Tools Palette)图4-3工具模板工具模版如图4-3,该模板提供了各种用于创建、修改和调试VI程序的工具。如果该模板没有出现,则可以在Windows菜单下选择Show Tools Palette命令以显示该模板。当从模板内选择了任一种工具后,鼠标箭头就会变成该工具相应的形状。当从Windows菜单下选择了Show Help Window功能后,把工具模板内选定的任一种工具光标放在流程图程序的子程序(Sub VI)或图标上,就会显示相应的帮助信息。控制模板(Control Palette)图4-4控制模板控制模版如图4-2,该模板用来给前面板设置各种所需的输出显示对象和输入控制对象。每个图标代表一类子模板。如果控制模板不显示,可以用Windows菜单的Show Controls Palette功能打开它,也可以在前面板的空白处,点击鼠标右键,以弹出控制模板。功能模板(Functions Palette) 图4-5功能模板功能模板是创建流程图程序的工具,如图4-5。该模板上的每一个顶层图标都表示一个子模板。若功能模板不出现,则可以用Windows菜单下的Show Functions Palette功能打开它,也可以在流程图程序窗口的空白处点击鼠标右键以弹出功能模板。4.3 LabVIEW优点1. 提供了丰富的图形控件,并采用图形化的编程方法,彻底把工程师们从复杂枯涩的文本编程工作中解放出来。 2. 内建的编译器在用户编写程序的同时就在后台自动完成了编译。因此用户在编写程序的过程中如果有语法错误,它会被立即显示出来。 3. 由于采用数据流模型,它实现了自动的多线程,从而能充分利用处理器尤其是多处理器的处理能力。 4. 通过DLL、CIN节点、ActiveX、.NET或MATLAB脚本节点技术,可以轻松实现LabVIEW与其他编程语言混和编程。 5. 通过应用程序生成器可以轻松地发布EXE、动态链接库或安装包。 6. LabVIEW提供了大量的驱动与专用工具,几乎能与任何接口的硬件轻松连接。 7. LabVIEW内建了600多个分析函数,用于数据分析和信号处理。 8. NI同时提供了丰富的附加模块,用于扩展LabVIEW在不同领域中的应用,例如实时模块、PDA模块、FPGA模块、数据记录与监控(DSC)模块、机器视觉模块与触摸屏模块等。5 串口通信协议5.1 串行系统串口是计算机上一种非常通用设备通信的协议。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配。串行设备最大的缺点是数据传输速度慢,如IBM PC机上的RS-232端口的最大的传输速率仅为仅为20kbps,不能完成数据流量很大的数据图像采集等工作。因此串行系统主要面向中低档用户,应用于便携式系统中,适用于对传输率和实时性要求不高的设备。5.2 串口硬件结构RS-232C 标准(协议)的全称是EIA-RS-232C 标准,其中EIA(Electronic Industry Association)代表美国电子工业协会,RS(Recommended standard)代表推荐标准,232是标识号,C代表RS232 的最新一次修改(1969),在这之前,有RS232B、RS232A。它规定连接电缆和机械、电气特性、信号功能及传送过程。常用物理标准还有有RS-232-C、IRS-422-A、RS-423A、RS-485。这里只介绍RS-232-C(简称232,RS232)。例如,目前在IBM PC 机上的COM1、COM2 接口,就是RS-232C接口。连接器:由于RS-232C 并未定义连接器的物理特性,因此,出现了DB-25、DB-15和DB-9各种类型的连接器,其引脚的定义也各不相同。下面分别介绍两种连接器。图5-1 DB251. DB-25: PC 和XT 机采用DB-25型连接器。DB-25 连接器定义了25 根信号线,分为4 组:l 异步通信的9个电压信号(含信号地SG)2,3,4,5,6,7,8,20,22l 20mA 电流环信号 9个(12,13,14,15,16,17,19,23,24)l 空6个(9,10,11,18,21,25)l 保护地(PE)1个,作为设备接地端(1脚)DB-25 型连接器的外形及信号线分配如图5-1所示。注意,20mA 电流环信号仅IBM PC和IBM PC/XT 机提供,至AT机及以后,已不支持。图5-2 DB92. DB-9 连接器在 AT 机及以后,不支持20mA 电流环接口,使用DB-9连接器,如图5-2所示。作为提供多功能I/O卡或主板上COM1 和COM2 两个串行接口的连接器。它只提供异步通信的9 个信号。DB-25 型连接器的引脚分配与DB-25 型引脚信号完全不同。因此,若与配接DB-25 型连接器的DCE设备连接,必须使用专门的电缆线。电缆长度:在通信速率低于20kb/s 时,RS-232C所直接连接的最大物理距离为15m(50英尺)。最大直接传输距离说明:RS-232C 标准规定,若不使用MODEM,在码元畸变小于4%的情况下,DTE和DCE 之间最大传输距离为15m(50英尺)。可见这个最大的距离是在码元畸变小于4%的前提下给出的。为了保证码元畸变小于4%的要求,接口标准在电气特性中规定,驱动器的负载电容应小于2500pF。5.3 串口通信方法首先,串口通信分为远距离通信(传输距离大于15米)和近距离通信两种,远距离通信一般要加调制解调器,因而使用的信号线较多,不在本文讨论范围。当通信距离较近时,可不需要Modem,通信双方可以直接连接,这种情况下,只需使用少数几根信号线。最简单的情况,在通信中根本不需要RS-232C的控制联络信号,只需三根线(发送线、接收线、信号地线)便可实现全双工异步串行通信。 无 Modem 时,最大通信距离按如下方式计算:RS-232C 标准规定:当误码率小于4%时,要求导线的电容值应小于2500PF。对于普通导线,其电容值约为170PF/M。则允许距离L=2500PF/(170PF/M)=15M。这一距离的计算,是偏于保守的,实际应用中,当使用9600bps,普通双绞屏蔽线时,距离可达3035米。零Modem 的最简连线(3 线制)图5-3是零MODEM 方式的最简单连接(即三线连接),图中的2 号线与3 号线交叉连接是因为在直连方式时,把通信双方都当作数据终端设备看待,双方都可发也可收。在这种方式下,通信双方的任何一方,只要请求发送RTS 有效和数据终端准备好DTR 有效就能开始发送和接收。(1)RTS 与CTS 互联:只要请求发送,立即得到允许(2)DTR 与DSR互联:只要本端准备好,认为本端立即可以接收(DSR、数传机准备好)图5-3串口连接5.4 串口通信接线方法表5-1串口的针脚定义:9针串口(DB9)25针串口(DB25)针号功能说明缩写针号功能说明缩写1数据载波检测DCD8数据载波检测DCD2接收数据RXD3接收数据RXD3发送数据TXD2发送数据TXD4数据终端准备DTR20数据终端准备DTR5信号地GND7信号地GND6数据设备准备好DSR6数据设备准备好DSR7请求发送RTS4请求发送RTS8清除发送CTS5清除发送CTS9振铃指示DELL22振铃指示DELL首先,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连。l 同一个串口的接收脚和发送脚直接用线相连对9针串口和25针串口,均是2与3直接相连;l 两个不同串口(不论是同一台计算机的两个串口或分别是不同计算机的串口)表5-2串口连接9针-9针25针-25针9针-25针233222322333557757表5-1和5-2是对微机标准串行口而言的,还有许多非标准设备,如接收GPS数据或电子罗盘数据,只要记住一个原则:接收数据针脚(或线)与发送数据针脚(或线)相连,彼此交叉,信号地对应相接。5.5 异步串口通信参数图5-4字符帧格式图5-4所示为字符帧格式1. 起始位异步通信数据帧的第一位是开始位,在通信线上没有数据传送时处于逻辑“1”状态。当发送设备要发送一个字符数据时,首先发出一个逻辑“0”信号,这个逻辑低电平就是起始位。起始位通过通信线传向接收设备,当接收设备检测到这个逻辑低电平后,就开始准备接收数据位信号。因此,起始位所起的作用就是表示字符传送开始2. 数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。在本次毕业设计中,采用的数据位为8。3. 停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。在本次毕业设计中,采用停止位为1.4. 奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。在本次毕业设计中,没有校验位。5. 波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中型饭店人员管理办法
- 装修工程协调管理办法
- 贷款债务重组管理办法
- 箱包样品室管理办法
- 衢州临时仓库管理办法
- 上市公司环安管理办法
- 财务管理办法及时性
- 订单班学生管理办法
- 上网电价结算管理办法
- 仓储物流设施管理办法
- 九年级上册英语书译林版单词表
- JT-T-1344-2020纯电动汽车维护、检测、诊断技术规范
- 个人代持协议书
- 基本医疗卫生与健康促进法
- 电力现货实战型交易策略分析
- 游戏交互设计趋势
- 滋养生命的水(教案)2023-2024学年综合实践活动六年级上册 长春版
- 教育研习手册
- 办公设备(电脑、一体机、投影机等)采购 投标方案(技术方案)
- 栾川县潭头金矿有限公司金矿矿山地质环境保护与土地复垦方案
- 幼儿园安全教案小火苗
评论
0/150
提交评论