



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_递归数列通项公式的求法 确定数列的通项公式,对于研究数列的性质起着至关重要的作用。求递归数列的通项公式是解决数学竞赛中有关数列问题的关键,本文着重对递归数列通项公式加以研究。 基础知识 定义:对于任意的,由递推关系确定的关系称为阶递归关系或称为阶递归方程,由阶递归关系及给定的前项的值(称为初始值)所确定的数列称为阶递归数列。若是线性的,则称为线性递归数列,否则称为非线性递归数列,在数学竞赛中的数列问题常常是非线性递归数列问题。求递归数列的常用方法:一公式法(1)设是等差数列,首项为,公差为,则其通项为;(2)设是等比数列,首项为,公比为,则其通项为;(3)已知数列的前项和为,则。二迭代法迭代恒等式:;迭乘恒等式: ,()迭代法能够解决以下类型一和类型二所给出的递推数列的通项问题:类型一:已知,求通项;类型二:已知,求通项;三待定系数法类型三:已知,求通项;四特征根法类型四:设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。 (1)若特征方程有两个不相等的实根,则其通项公式为(),其中A、B由初始值确定;(2)若特征方程有两个相等的实根,则其通项公式为(),其中A、B由初始值确定。证明:设特征根为,则所以=即是以为公比,首项为的等比数列。所以,所以(1)当时,则其通项公式为,其中,;(2)当时,则其通项公式为,其中五代换法代换法主要包括三角代换、分式代换与代换相消等,其中代换相消法可以解决以下类型五:已知,求通项。六不动点法若,则称为的不动点,利用不动点法可将非线性递归式化归为等差数列、等比数列或易于求解的递关系的递推关系,从而达到求解的目的。类型六:(1)已知,且,求通项; (2)已知,求通项;七数学归纳法八构造法典例分析例1数列an中,a1=1,an+1an,且成立,求。例2已知正数数列满足:,其中,求。例3已知数列an满足:,求。例4已知,证明:该数列中的一切数都是整数。例5已知,求。例6数列满足,且,求的通项公式。例7已知,求。例8数列满足,求。例9已知,求的通项公式。例10已知数列满足:,且,求的通项公式。例11若数列的前项和为,且满足,求的通项公式。拓展:若数列的前项和为,且满足,求的通项公式。(参考答案:,其中)例12设数列满足:,且,证明:()是完全平方数。练习题:1已知数列满足,求数列的通项2已知数列满足,求数列的通项3已知数列满足,求数列的通项4已知数列满足,求数列的通项练习答案:1解:其特征方程为,解得,令,由,得, 2解:其特征方程为,解得,令,由,得, 3解:其特征方程为,化简得,解得,令 由得,可得,数列是以为首项,以为公比的等比数列,4解:其特征方程为,即,解得,令 由得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论