集合与元素PPT课件.ppt_第1页
集合与元素PPT课件.ppt_第2页
集合与元素PPT课件.ppt_第3页
集合与元素PPT课件.ppt_第4页
集合与元素PPT课件.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章集合与逻辑用语,开始,1.1.1集合与元素,1.1集合的概念,1.1.1集合与元素,1.1集合的概念,1.1集合的概念,第一章集合与逻辑用语,教师参阅,学生自学,继续,返回,退出,例题,集合是数学的基础知识,集合思想和方法是学习其他数学知识的工具。初中已经使用“自然数集合”,“整数集合”,“圆是到定点的距离相等的集合”等。集合不仅指数和点,可以是任何事物,例如,日常同学们对“集合”并不陌生,如上体育课时,老师喊:“1.2班集合!”,1.2班全体同学就是一个集合,教师参阅,学生自学,继续,退出,1.1.1集合与元素,返回,概念,1.1.1集合与元素,集合:一般地,某些确定的对象组成的整体就成为一个集合,也称集。,退出,教师参阅,学生自学,继续,-概念-,返回,元素:构成集合的各个对象叫做这个集合的元素。,a是集合A的元素,记作aA。3Aa不是集合A的元素,记作aA。-3A,集合一般用A,B,C等表示.元素一般用a,b,c等表示,元素3属于集合A,元素-3不属于集合A,1.1.1集合与元素,-表示符号-,例题,概念,教师参阅,学生自学,继续,退出,返回,1.1.1集合与元素,类别特征,例题,概念,教师参阅,学生自学,继续,退出,返回,1.1.1集合与元素,例1:下列各组事件是否构成集合?小于8的自然数全体;曲线Y=x2+2上的点;很高的山。,解:能构成集合。因为一个自然数是否小于8是可以确定的。,解:能构成集合。因为一个点是否在曲线Y=x2+2上是可以确定的。,解:不能构成集合。因为没有确切的标准判定一座山是否很高。,-例题-,例题,教师参阅,学生自学,继续,退出,返回,概念,-5Z-5Q-5R,1.1.1集合与元素,思考、例题,例题,教师参阅,学生自学,继续,退出,返回,概念,思考题:请同学举出5个集合的例子。,解:0N0Z0Q0R,QR,R,2019/12/13,9,可编辑,练习1:(口答)下列每组事件是否构成集合?,1、我班学习较好的所有的同学;2、全体大于-6的整数;3、美丽的校园。,构成,不构成,不构成,1.1.1集合与元素,-练习-,例题,教师参阅,学生自学,继续,退出,返回,概念,练习3:(口答)下列给定集合各有那些元素?,方程x-2=3的解构成的集合小于10的正奇数构成的集合一年中有31天的月份构成的集合,51,3,5,7,91,3,5,7,8,10,12月份,作业:P4练习1.1(1)1、2、3,作业:P4练习1.1(1)1、2、3,1.1.1集合与元素,练习作业,例题,教师参阅,学生自学,继续,退出,返回,概念,小结:元素确定性:可以判定一个对象是否是一个集合的元素。元素互异性:一个集合中的相同对象,算作一个元素。,祝同学们进步!,把握今天拥有未来,把握今天拥有未来,谢谢使用本课件,第一章集合与罗辑用与语1.1集合的概念,(课件使用说明)PowerPoint环境下打开“集合1.1.1(2,3)”放映。鼠标点击下方选择“教师参阅”、“学生自学”“继续”等可以进入状态。希望提出宝贵意见和建议。,本节重点:集合概念及其表示方法,子集概念,本节难点:正确运用集合两种表示法;分清元素与子集、属于与包含的区别。,主要内容:集合与元素,有限集和无限集,空集。,退出,教师参阅,学生自学,继续,集合思想的发展,例题,学生自学,继续,退出,返回,集合论自一八九二年著名的数学家康托作奠基性工作以来,集合论思想的应用越来越广泛。集合的概念是数学的一个基本概念,很难用更简单的概念来给他下定义只能给予一种描述,关于集合的描述是多种多样的。诸如:“凡说到集合指的就是某些对象的汇集。”-H.A.福罗洛夫:实变函数,例题,学生自学,退出,返回,概念,继续,“凡是具有某种特殊性质的东西的全体即称为集合。”-那汤松实变函数论“凡是具有某种性质的、确定的有区别的事物的全体就是一个集合(SET)或简称集。”-集合论“所谓集合乃是可以区别的事物的汇集”-河田敬集合拓扑测度“某些指定的东西集在一起就成为集。”-欧阳光集合和应射,集合思想的发展,教师参阅,学生自学,返回,退出,“若干个(有限或无限多个)固定事物的全体就是一个集叫做一个集合。”-张禾瑞近似代数基础“一组对象的全体形成一个集合。”-高中数学发散思维辅导“集合是指由一些事物的组成的整体。”-职高教材“某些确定的对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论