



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二项式定理1二项式定理:,2基本概念:二项式展开式:右边的多项式叫做的二项展开式。二项式系数:展开式中各项的系数.项数:共项,是关于与的齐次多项式.通项:展开式中的第项叫做二项式展开式的通项。用表示。3注意关键点:项数:展开式中总共有项。顺序:注意正确选择,其顺序不能更改。与是不同的。指数:的指数从逐项减到,是降幂排列。的指数从逐项减到,是升幂排列。各项的次数和等于.系数:注意正确区分二项式系数与项的系数,二项式系数依次是项的系数是与的系数(包括二项式系数)。4常用的结论:令 令 5性质:二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即,二项式系数和:令,则二项式系数的和为, 变形式。奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令,则,从而得到:奇数项的系数和与偶数项的系数和:二项式系数的最大项:如果二项式的幂指数是偶数时,则中间一项的二项式系数取得最大值。 如果二项式的幂指数是奇数时,则中间两项的二项式系数,同时取得最大值。系数的最大项:求展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别为,设第项系数最大,应有,从而解出来。6二项式定理的十一种考题的解法:题型一:二项式定理的逆用;例:练:题型二:利用通项公式求的系数;例:在二项式的展开式中倒数第项的系数为,求含有的项的系数?练:求展开式中的系数?题型三:利用通项公式求常数项;例:求二项式的展开式中的常数项?练:求二项式的展开式中的常数项?练:若的二项展开式中第项为常数项,则题型四:利用通项公式和讨论确定有理数项;例:求二项式展开式中的有理项?题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若展开式中偶数项系数和为,求.练:若的展开式中,所有的奇数项的系数和为,求它的中间项。题型六:最大系数,最大项;例:已知,若展开式中第项,第项与第项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?练:在的展开式中,二项式系数最大的项是多少?练:在的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少?例:写出在的展开式中,系数最大的项?系数最小的项?例:若展开式前三项的二项式系数和等于79,求的展开式中系数最大的项?练:在的展开式中系数最大的项是多少?题型七:含有三项变两项;例:求当的展开式中的一次项的系数?练:求式子的常数项?题型八:两个二项式相乘;例:练:练:题型九:奇数项的系数和与偶数项的系数和;例:题型十:赋值法;例:设二项式的展开式的各项系数的和为,所有二项式系数的和为,若,则等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年乡村手工艺合作社法务岗位面试要点及模拟题解析
- 2025年中国电力建设集团招聘考试题库
- 2025年农村金融专业招聘考试模拟题集萃
- 抹灰工人安全培训内容课件
- 2025年临床医疗管理信息系统项目发展计划
- 2025年医用气体系统项目发展计划
- 福建省福州市2025-2026学年高三第一次质量检测数学试卷(含答案)
- 抗焦虑抑郁药物分类课件
- 2025年1月吕梁市贺昌中学第一学期高一期末学业水平测试必修一人教版2019
- 2024-2025学年广西柳州市三江侗族自治县人教版三年级下册期末考试数学试卷(含答案)
- 2025年中国物流集团国际物流事业部招聘面试经验及模拟题集
- 乡镇安全培训课件
- 2025四川省公安厅招聘辅警(448人)笔试参考题库附答案解析
- 中望CAD机械版使用手册
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 2024年9月28日安徽省地市级遴选笔试真题及解析
- 五运六气方剂
- 精益生产之自働化培训课件
- 施工现场岗位安全风险告知卡
- 腰椎穿刺术3PPT优秀课件
- 广州市小升初语文分析PPT学习教案
评论
0/150
提交评论