




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
请同学们认真答题,每一道题都是经过不断筛选推敲整理出来的三人行教育陈老师教案2014/2015年中考题整理一、选择题(每题三分)1.(2015绵阳第10题,3分)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A(112)米B(112)米C(112)米D(114)米考点:解直角三角形的应用.分析:出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长解答:解:如图,延长OD,BC交于点PODC=B=90,P=30,OB=11米,CD=2米,在直角CPD中,DP=DCcot30=2m,PC=CD(sin30)=4米,P=P,PDC=B=90,PDCPBO,=,PB=11米,BC=PBPC=(114)米故选:D点评:本题通过构造相似三角形,综合考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念2.(2015山东日照 ,第10题4分)如图,在直角BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tanCAD的值()ABCD考点:解直角三角形.分析:延长AD,过点C作CEAD,垂足为E,由tanB=,即=,设AD=5x,则AB=3x,然后可证明CDEBDA,然后相似三角形的对应边成比例可得:,进而可得CE=x,DE=,从而可求tanCAD=解答:解:如图,延长AD,过点C作CEAD,垂足为E,tanB=,即=,设AD=5x,则AB=3x,CDE=BDA,CED=BAD,CDEBDA,CE=x,DE=,AE=,tanCAD=故选D3. (2015山东济宁,9,3分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为( )A.5米 B.6米 C. 8米 D. 米【答案】A4、(2014孝感,第8题3分)如图,在ABCD中,对角线AC、BD相交成的锐角为,若AC=a,BD=b,则ABCD的面积是()AabsinBabsinCabcosDabcos考点:平行四边形的性质;解直角三角形分析:过点C作CEDO于点E,进而得出EC的长,再利用三角形面积公式求出即可解答:解:过点C作CEDO于点E,在ABCD中,对角线AC、BD相交成的锐角为,AC=a,BD=b,sin=,EC=COsin=asin,SBCD=CEBD=asinb=absin,ABCD的面积是:absin2=absin故选;A5、(2014泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”下列各组数据中,能作为一个智慧三角形三边长的一组是()A1,2,3B1,1,C1,1,D1,2,考点:解直角三角形专题:新定义分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120,底角30的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,依此即可作出判定解答:解:A、1+2=3,不能构成三角形,故选项错误;B、12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120,底角30的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,其中9030=3,符合“智慧三角形”的定义,故选项正确故选:D6、(2014扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,ABBC,ADCD,BAD=60,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tanMCN=()(第2题图)ABCD2考点:全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理专题:计算题分析:连接AC,通过三角形全等,求得BAC=30,从而求得BC的长,然后根据勾股定理求得CM的长,连接MN,过M点作MEON于E,则MNA是等边三角形求得MN=2,设NF=x,表示出CF,根据勾股定理即可求得MF,然后求得tanMCN解答:解:AB=AD=6,AM:MB=AN:ND=1:2,AM=AN=2,BM=DN=4,连接MN,连接AC,ABBC,ADCD,BAD=60在RtABC与RtADC中,RtABCRtADC(LH)BAC=DAC=BAD=30,MC=NC,BC=AC,AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,BC=2,在RtBMC中,CM=2AN=AM,MAN=60,MAN是等边三角形,MN=AM=AN=2,过M点作MEON于E,设NE=x,则CE=2x,MN2NE2=MC2EC2,即4x2=(2)2(2x)2,解得:x=,EC=2=,ME=,tanMCN=故选A7. (2014浙江杭州,第10题,3分)已知ADBC,ABAD,点E,点F分别在射线AD,射线BC上若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A1+tanADB=B2BC=5CFCAEB+22=DEFD4cosAGB=考点:轴对称的性质;解直角三角形分析:连接CE,设EF与BD相交于点O,根据轴对称性可得AB=AE,并设为1,利用勾股定理列式求出BE,再根据翻折的性质可得DE=BF=BE,再求出BC=1,然后对各选项分析判断利用排除法求解解答:解:如图,连接CE,设EF与BD相交于点O,由轴对称性得,AB=AE,设为1,则BE=,点E与点F关于BD对称,DE=BF=BE=,AD=1+,ADBC,ABAD,AB=AE,四边形ABCE是正方形,BC=AB=1,1+tanADB=1+=1+1=,故A选项结论正确;CF=BFBC=1,2BC=21=2,5CF=5(1),2BC5CF,故B选项结论错误;AEB+22=45+22=67,在RtABD中,BD=,sinDEF=,DEF67,故C选项结论错误;由勾股定理得,OE2=()2()2=,OE=,EBG+AGB=90,EGB+BEF=90,AGB=BEF,又BEF=DEF,4cosAGB=,故D选项结论错误故选A二、填空题(每题三分)1、(2015绵阳第18题,3分)如图,在等边ABC内有一点D,AD=5,BD=6,CD=4,将ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则CDE的正切值为3考点:旋转的性质;等边三角形的性质;解直角三角形.专题:计算题分析:先根据等边三角形的性质得AB=AC,BAC=60,再根据旋转的性质得AD=AE=5,DAE=BNAC=60,CE=BD=6,于是可判断ADE为等边三角形,得到DE=AD=5;过E点作EHCD于H,如图,设DH=x,则CH=4x,利用勾股定理得到52x2=62(4x)2,解得x=,再计算出EH,然后根据正切的定义求解解答:解:ABC为等边三角形,AB=AC,BAC=60,ABD绕A点逆时针旋转得ACE,AD=AE=5,DAE=BNAC=60,CE=BD=6,ADE为等边三角形,DE=AD=5,过E点作EHCD于H,如图,设DH=x,则CH=4x,在RtDHE中,EH2=52x2,在RtDHE中,EH2=62(4x)2,52x2=62(4x)2,解得x=,EH=,在RtEDH中,tanHDE=3,即CDE的正切值为3故答案为:3/2、(2015浙江金华,第16题4分)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时,点A,B,C在同一直线上,且ACD=90.图2是小床支撑脚CD折叠的示意图,在折叠过程中,ACD变形为四边形,最后折叠形成一条线段.(1)小床这样设计应用的数学原理是 (2)若AB:BC=1:4,则tanCAD的值是 【答案】(1)三角形的稳定性和四边形的不稳定性;(2).【考点】线动旋转问题;三角形的稳定性;旋转的性质;勾股定理;锐角三角函数定义.【分析】(1)在折叠过程中,由稳定的ACD变形为不稳定四边形,最后折叠形成一条线段,小床这样设计应用的数学原理是:三角形的稳定性和四边形的不稳定性。(2)AB:BC=1:4,设,则.由旋转的性质知,.在中,根据勾股定理得,.3. (2014浙江宁波,第17题4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45角,那么这个路段最多可以划出 17 个这样的停车位(1.4)考点:解直角三角形的应用分析:如图,根据三角函数可求BC,CE,则BE=BC+CE可求,再根据三角函数可求EF,再根据停车位的个数=(56BE)EF+1,列式计算即可求解解答:解:如图,BC=2.2sin45=2.21.54米,CE=5sin45=53.5米,BE=BC+CE5.04,EF=2.2sin45=2.23.14米,(565.04)3.14+1=50.963.14+116+1=17(个)故这个路段最多可以划出17个这样的停车位故答案为:174. (2014四川内江,第23题,6分)如图,AOB=30,OP平分AOB,PCOB于点C若OC=2,则PC的长是考点:含30度角的直角三角形;勾股定理;矩形的判定与性质专题:计算题分析:延长CP,与OA交于点Q,过P作PDOA,利用角平分线定理得到PD=PC,在直角三角形OQC中,利用锐角三角函数定义求出QC的长,在直角三角形QDP中,利用锐角三角函数定义表示出PQ,由QP+PC=QC,求出PC的长即可解答:解:延长CP,与OA交于点Q,过P作PDOA,OP平分AOB,PDOA,PCOB,PD=PC,在RtQOC中,AOB=30,OC=2,QC=OCtan30=2=,APD=30,在RtQPD中,cos30=,即PQ=DP=PC,QC=PQ+PC,即PC+PC=,解得:PC=故答案为:三 解答题1. (2015四川广安,第23题8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为,已知tan=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度考点:解直角三角形的应用仰角俯角问题.分析:首先根据题意分析图形,本题涉及到两个直角三角形,分别解可得BG与EF的大小,进而求得BE、AE的大小,再利用AB=BEAE可求出答案解答:解:作DGAE于G,则BDG=,易知四边形DCEG为矩形DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DGtan=35=15m,BE=15+1.6=16.6m斜坡FC的坡比为iFC=1:10,CE=35m,EF=35=3.5,AF=1,AE=AF+EF=1+3.5=4.5,AB=BEAE=16.64.5=12.1m答:旗杆AB的高度为12.1m2、(2015浙江省绍兴市,第20题,8分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60和30。(1)求BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m)。备用数据:,考点:解直角三角形的应用仰角俯角问题.分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;92)设PE=x米,在直角APE和直角BPE中,根据三角函数利用x表示出AE和BE,根据AB=AEBE即可列出方程求得x的值,再在直角BQE中利用三角函数求得QE的长,则PQ的长度即可求解解答:解:延长PQ交直线AB于点E,(1)BPQ=9060=30;(2)设PE=x米在直角APE中,A=45,则AE=PE=x米;PBE=60BPE=30在直角BPE中,BE=PE=x米,AB=AEBE=6米,则xx=6,解得:x=9+3则BE=(3+3)米在直角BEQ中,QE=BE=(3+3)=(3+)米PQ=PEQE=9+3(3+)=6+29(米)答:电线杆PQ的高度约9米3.(2015浙江嘉兴,第22题12分)小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO后,电脑转到AOB位置(如图3),侧面示意图为图4.已知OA=OB=24cm,OCOA于点C,OC=12cm.(1)求CAO的度数.(2)显示屏的顶部B比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏OB与水平线的夹角仍保持120,则显示屏OB应绕点O按顺时针方向旋转多少度?考点:解直角三角形的应用;旋转的性质.分析:(1)通过解直角三角形即可得到结果;(2)过点B作BDAO交AO的延长线于D,通过解直角三角形求得BD=OBsinBOD=24=12,由C、O、B三点共线可得结果;(3)显示屏OB应绕点O按顺时针方向旋转30,求得EOB=FOA=30,既是显示屏OB应绕点O按顺时针方向旋转30解答:解:(1)OCOA于C,OA=OB=24cm,sinCAO=,CAO=30;(2)过点B作BDAO交AO的延长线于D,sinBOD=,BD=OBsinBOD,AOB=120,BOD=60,BD=OBsinBOD=24=12,OCOA,CAO=30,AOC=60,AOB=120,AOB+AOC=180,OB+OCBD=24+1212=312,显示屏的顶部B比原来升高了(3612)cm;(3)显示屏OB应绕点O按顺时针方向旋转30,理由;显示屏OB与水平线的夹角仍保持120,EOF=120,FOA=CAO=30,AOB=120,EOB=FOA=30,显示屏OB应绕点O按顺时针方向旋转304、(2015湖南省常德市,第23题8分)如图3图4,分别是吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30角,吊绳AB与支架BC的夹角为80,吊臂AC与地面成70角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)?(参考数据:sin10cos800.17,cos10sin800.98,sin20cos700.34,tan702.75,sin700.94)【解答与分析】这是一个解直角三角形的题,但此题要求看出AB=AC,然后利用解直接三角形的方法求出AC,再在RtAEC中解出AE的长,从而求出A到地面的高度为AE+2解:由题可知:如图,BHHE,AEHE,CD=2,BC=4BCH =30,ABC=,80,ACE=70BCH+ACB+ACE=180ACB=80ABC=80ABC=ACBAC=BC=4过点A作AMBC于M,CM=BM=2在RtACM中,CM=2,ACB=80ACB=AC在RtACE中,AC,ACE=70ACE= AE11.1故可得点A到地面的距离为13.1米5、(2015淄博第22题,10分)如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EGMN,EG距MN的高度为42cm,AB=43cm,CF=42cm,DBA=60,DAB=80求两根较粗钢管AD和BC的长(结果精确到0.1cm参考数据:sin800.98,cos800.17,tan805.67,sin600.87,cos600.5,tan601.73)考点:解直角三角形的应用.专题:应用题分析:作FHAB于H,DQAB于Q,如图2,FH=42cm,先在RtBFH中,利用FBH的正弦计算出BF48.28,则BC=BF+CF=90.3(cm),再分别在RtBDQ和RtADQ中,利用正切定义用DQ表示出BQ和AQ,得BQ=,AQ=,则利用BQ+AQ=AB=43得到+=43,解得DQ56.999,然后在RtADQ中,利用sinDAQ的正弦可求出AD的长解答:解:作FHAB于H,DQAB于Q,如图2,FH=42cm,在RtBFH中,sinFBH=,BF=48.28,BC=BF+CF=48.28+4290.3(cm);在RtBDQ中,tanDBQ=,BQ=,在RtADQ中,tanDAQ=,AQ=,BQ+AQ=AB=43,+=43,解得DQ56.999,在RtADQ中,sinDAQ=,AD=58.2(cm)答:两根较粗钢管AD和BC的长分别为58.2cm、90.3cm6、(2015江苏泰州,第23题10分)如图,某仓储中心有一斜坡AB,其坡度为,顶部A处的高AC为4m,B、C在同一水平地面上。(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方形货柜的侧面图,其中DE=2.5m,EF=2m.将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高。(,结果精确到0.1m) 【答案】(1) 8m(2) 4.5m【解析】试题分析:(1)根据坡度定义直接解答即可; (2)作DSBC,垂足为S,且与AB相交于H证出GDH=SBH,根据,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS试题解析:(1)坡度为i=1:2,AC=4m, BC=42=8m (2)作DSBC,垂足为S,且与AB相交于H DGH=BSH,DHG=BHS, GDH=SBH, DG=EF=2m, GH=1m, DH=m,BH=BF+FH=3.5+(2.51)=5m, 设HS=xm,则BS=2xm, x2+(2x)2=52, x=m, DS=+=2m4.5m7. ( 2014安徽省,第18题8分)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号)考点:解直角三角形的应用分析:过B点作BEl1,交l1于E,CD于F,l2于G在RtABE中,根据三角函数求得BE,在RtBCF中,根据三角函数求得BF,在RtDFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解解答:解:过B点作BEl1,交l1于E,CD于F,l2于G在RtABE中,BE=ABsin30=20=10km,在RtBCF中,BF=BCcos30=10=km,CF=BFsin30=km,DF=CDCF=(30)km,在RtDFG中,FG=DFsin30=(30)=(15)km,EG=BE+BF+FG=(25+5)km故两高速公路间的距离为(25+5)km8(2014泰州,第22题,10分)图、分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角CDE为12,支架AC长为0.8m,ACD为80,求跑步机手柄的一端A的高度h(精确到0.1m)(参考数据:sin12=cos780.21,sin68=cos220.93,tan682.48)考点:解直角三角形的应用分析:过C点作FGAB于F,交DE于G在RtACF中,根据三角函数可求CF,在RtCDG中,根据三角函数可求CG,再根据FG=FC+CG即可求解解答:解:过C点作FGAB于F,交DE于GCD与地面DE的夹角CDE为12,ACD为80,ACF=90+1280=22,CAF=68,在RtACF中,CF=ACsinCAF0.744m,在RtCDG中,CG=CDsinCDE0.336m,FG=FC+CG1.1m故跑步机手柄的一端A的高度约为1.1m9. (2014山东枣庄,第21题8分)如图,一扇窗户垂直打开,即OMOP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35到达ON位置,此时,点A、C的对应位置分别是点B、D测量出ODB为25,点D到点O的距离为30cm(1)求B点到OP的距离;(2)求滑动支架的长(结果精确到1cm参考数据:sin250.42,cos250.91,tan250.47,sin550.82,cos550.57,tan551.43) 考点:解直角三角形的应用分析:(1)根据三角函数分别表示出OE和DE,再根据点D到点O的距离为30cm可列方程求解;(2)在RtBDE中,根据三角函数即可得到滑动支架的长解答:解:(1)在RtBOE中,OE=,在RtBDE中,DE=,则+=30,解得BE10.6cm故B点到OP的距离大约为10.6cm;(2)在RtBDE中,BD=25.3cm故滑动支架的长25.3cm10. (2014山东烟台,第21题7分)小明坐于堤边垂钓,如图,河堤AC的坡角为30,AC长米,钓竿AO的倾斜角是60,其长为3米,若AO与钓鱼线OB的夹角为60,求浮漂B与河堤下端C之间的距离考点:解直角三角形的应用分析:延长OA交BC于点D先由倾斜角定义及三角形内角和定理求出CAD=180ODBACD=90,解RtACD,得出AD=ACtanACD=米,CD=2AD=3米,再证明BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BDCD即可求出浮漂B与河堤下端C之间的距离解答:延长OA交BC于点DAO的倾斜角是60,ODB=60ACD=30,CAD=180ODBACD=90在RtACD中,AD=ACtanACD=(米),CD=2AD=3米,又O=60,BOD是等边三角形,BD=OD=OA+AD=3+=4.5(米),BC=BDCD=4.53=1.5(米)答:浮漂B与河堤下端C之间的距离为1.5米11. (2014甘肃白银、临夏,第22题8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm点A、C、E在同一条只显示,且CAB=75(参考数据:sin75=0.966,cos75=0.259,tan75=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm)考点:解直角三角形的应用分析:(1)在RtACD中利用勾股定理求AD即可(2)过点E作EFAB,在RTEFA中,利用三角函数求EF=AEsin75,即可得到答案解答:解:(1)在RtACD中,AC=45cm,DC=60cmAD=75(cm),车架档AD的长是75cm;(2)过点E作EFAB,垂足为F,AE=AC+CE=(45+20)cm,EF=AEsin75=(45+20)sin7562.783563(cm),车座点E到车架档AB的距离约是63cm点评:此题主要考查了勾股定理与三角函数的应用,关键把实际问题转化为数学问题加以计算12(2014浙江绍兴,第21题10分)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量(1)如图1,第一小组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 索引动态更新算法-洞察及研究
- 慢镜头技术的情感传递研究-洞察及研究
- 碳中和国际合作路径-洞察及研究
- 人民法院建筑方案设计
- 零延迟交互技术-洞察及研究
- 化肥厂化肥渠道开发规定
- 河北省张家口市蔚县2025-2026学年上学期九年级历史第一次月考质量检测题(无答案)
- 物联感知技术和智慧城市建设-洞察及研究
- 安徽省安庆市九一六学校2024-2025学年高三下学期第七次强化训练物理试题(含答案)
- 北京市文汇中学2024-2025学年八年级下学期4月期中道德与法治试题
- 出差工作安全培训课件
- 产科护理教学比赛课件
- 占道施工安全培训内容课件
- 2025年芜湖市鸠江区村级后备干部集中招录工作101名考试参考题库及答案解析
- 2025年美容整形师专业知识考核试题及答案
- 2025年茶粉行业研究报告及未来行业发展趋势预测
- 培训民警拍照宣传课件
- 2025一建《建设工程项目管理》冲刺361题
- 人教版二年级数学上册第二单元 1~6的表内乘法必刷卷 (含答案)
- 抖音账号实名认证承诺函模板
- 证券业反洗钱培训课件
评论
0/150
提交评论