




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,“截长补短法”的应用,新洲区实验中学漆君秀,截长法即在较长线段上截取一段等于两较短线段中的一条,再证剩下的一段等于另一段较短线段。所谓补短,即把两短线段补成一条,再证它与长线段相等。,截长补短法简介,例1、如图,ADBC,点E在线段AB上,ADE=CDE,DCE=ECB.求证:CD=AD+BC.,A,B,C,D,E,F,思路点拨:在长线段CD上截取DF=DA,则DAEDFE,再只需证明CEFCEB,即可得到CF=CB,截长法,如图,ADBC,点E在线段AB上,ADE=CDE,DCE=ECB.求证:CD=AD+BC.,A,B,C,D,E,F,证明:(截长法)在DC上截取DF=DA,连接EF利用SAS证明ADEFDEA=5又ADBC,A+B=180而5+6=180,6=B在CEF和CEB中6=B(已证)3=4(已知)CE=CE(公共),1,2,3,4,5,6,CEFCEB(AAS)CF=BCCD=DF+CFCD=AD+BC,A,B,C,D,E,F,3、再证AEDBEF,得到AD=BF,由CF=BF+BC=AD+BC,得CD=AD+BC.,补短法思路导航,1、延长CB与DE相交于F,由已知条件可以推出DEC=90,2、根据三角形判定定理证明CEDCEF得到CD=CF,ED=EF,如图,ADBC,点E在线段AB上,ADE=CDE,DCE=ECB.求证:CD=AD+BC.,例2、五边形ABCDE中,AB=AE,BC+DE=CD,ABC+AED=180,求证:AD平分CDE,A,E,D,C,B,F,学法辅导,1、可考虑补短法,延长DE至F,使EF=BC,连AC,AF,证两次全等即可求解。,2、注意,用截长法得不到两次全等,故本题不宜用截长法来做,A,E,D,C,B,F,A,B,C,D,M,F,E,比较例1和例2,一般出现什么条件时可以同时使用截长补短两种办法?,思考,已知ABC中,BD,CE分别平分ABC和ACB,BD,CE交于点O,且BC=BE+CD,求A的度数。,A,B,C,E,D,O,做一做,A,B,C,E,D,O,F,M,4,3,2,1,已知ABC中,BD,CE分别平分ABC和ACB,BD,CE交于点O,且BC=BE+CD,求A的度数。,做一做,例3.在ABC中,ACB=90,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E。求证:DE=AD+BE,2019/12/13,11,可编辑,4,2,例4.在ABC中,B2C,AD平分BAC.求证:AB+BD=AC,A,B,C,D,E,证明:,在AC上截取AE=AB,连结DE,ABDAED,BD=DE,B3,3=4+C,B2C,3=2C,2C=4+C,DE=CE,BD=CE,AE+EC=AC,AB+BD=AC,1,3,C4,截长法,在ABC中,B2C,AD平分BAC.求证:AB+BD=AC,A,B,C,D,E,在AB的延长线截取BE=BD,连结DE.,证明:,补短法,在射线AB截取BE=BD,连结DE.,2.如图,在ABC中,ABC=60,AD、CE分别平分BAC、ACB,求证:AC=AE+CD,A,C,E,B,O,D,在AC上取CF=CD,连OF,证AEOAFO,得CODCOF,AOC=120AOE=DOC=60=FOC,F,例题讲解,如图,ADBC,AE,BE分别平分DAB,CBA,CD经过点E,求证:ABAD+BC,练习,在等边ABC的两边AB、AC所在直线上分别有两点M、N,D为ABC外一点,且MDN=60,BDC=120,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系.,如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是,A,B,C,D,M,N,思考题,在等边ABC的两边AB、AC所在直线上分别有两点M、N,D为ABC外一点,且MDN=60,BDC=120,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系.,如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)的结论还成立吗?,A,B,C,D,M,N,写出你的猜想并加以证明;,如图3,点M、N分别在边AB、CA的延长线上时,猜想(I)的结论还成立吗?若不成立,又有怎样的数量关系?写出你的猜想并加以证明.,A,B,C,D,M,N,截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长使之与特定线段相等,再利用三角形全等的有关性质加以说明这种作法,适合于证明线段的和、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025员工试用期劳动合同范本AA
- 户外摆件租赁合同范本
- 房顶漏水装修合同范本
- 种植用工合同范本
- 酒店的购销合同范本
- 厂家授权合作合同范本
- 2025合同范本汇编大全
- 快递店员工合同范本
- 拍车定金合同范本
- 2025关于石油购销的合同范本
- GB/T 7247.1-2024激光产品的安全第1部分:设备分类和要求
- 2023银行首届夏日音乐会系列(天籁之音乐动一夏主题)活动策划方案-106正式版
- 公路桥梁养护工程预算定额
- 校服供货服务方案
- 呼吸机断电的应急演练
- 玉兰花的栽培与管理方法
- 早期子宫内膜癌患者保留生育功能治疗专家共识
- WJ30059-2023军用爆炸品设计安全技术规程
- (完整)中医症候积分量表
- 移动电子商务技术基础及应用
- 公共管理研究方法 课件 第11、12章 定性比较分析、写作
评论
0/150
提交评论