(计算机科学与技术专业论文)工业监控系统故障诊断技术的研究与应用.pdf_第1页
(计算机科学与技术专业论文)工业监控系统故障诊断技术的研究与应用.pdf_第2页
(计算机科学与技术专业论文)工业监控系统故障诊断技术的研究与应用.pdf_第3页
(计算机科学与技术专业论文)工业监控系统故障诊断技术的研究与应用.pdf_第4页
(计算机科学与技术专业论文)工业监控系统故障诊断技术的研究与应用.pdf_第5页
已阅读5页,还剩70页未读 继续免费阅读

(计算机科学与技术专业论文)工业监控系统故障诊断技术的研究与应用.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

合肥工业大学硕士论文 摘 要 随着科学技术地不断发展和工业自 动化水平的日 益提高, 计算机控制系统越 来越多的应用于铁路, 矿山, 钢铁, 石化等行业, 并相继出 现了 许多大型的, 技 术水平高, 功能齐全的复杂系统。 这些系统规模大, 造价高, 一旦出 现故障, 其 后果往往是灾难性的。 因此要求这些系统应具有较高的安全性和可靠性。 在这种 要求下, 故障诊断技术应运而生, 它对于 提高 系统的安 全性 起到了 极为重要的作 用。 本文的第一章介绍了 故障诊断的 发展 概况与一些故障诊断的 基本知识; 第二 章讨论了基于专家系统的故障诊断;第三章论述了 基于故樟树分析法的故障诊 断; 第四章给出了基于模糊系统的故障诊断; 第五章详细分析了 基于人工神经网 络的故障诊断: 第六章是本文的 核心部分, 它 在综合了 前面的 模糊系统和神多网 络故障诊断的基础上, 提出了 一种基于 神经模糊网 络故障诊断, 并将该技术应用 到 “ k j 1 5 a矿井机车运输监控系统” 故障 检侧上, 取得了良 好的 效果. 关 键 词 : 故 障 im r 、 洲 2 神经模糊网络控 。 1 故 障 6 合肥工业大学硕士论文 t h e r e s e a r c h a n d a p p l i c a t i o n o f t h e f a u l t d i a g n o s i s f o r i n d u s t r y c o n t r o l s y s t e m ab s t r a c t wi t h t h e d e v e l o p m e n t o f s c i e n c e a n d t h e r i s i n g o f t h e i n d u s t ry a u t o m a t i o n , m o r e a n d m o r e c o n t ro l s y s t e m s b a s e d o n t h e c o m p u t e r a re a p p l ic a t e d i n t h e a r e a s u c h a s r a i l w a y , ir o n , p e t r o c h e m ic a l .m a n y c o m p l e x s y s t e m s w it h h i g h t e c h l o n o g y a n d a s s o rt e d fu n c t i o n e m e r g e .t h o s e s y s t e m s a r e v e ry l a r g e a n d c o s t l o t s , o n c e t h e y h a v e t h e f a u l t s ,t h e re s u l t a re p r o b a b l y d i s a s t r o u s . s o w e n e e d t h o s e s y e t e m s h a v e h i g h s e c u r i ty a n d w e l l d e p e n d m e n t .u n d e r t h i s r e q u i re m e n t , f a u l t d i a g n o s i s e m e r g e w i t h t h e t i d e o f t h e t im e s . i t g i v e s m a n y i m p o rt a n t h e lp s t o e n h a n c e t h e s e c u r i ty o f t h e c o n t r o l s y s t e m. t h e f ir s t c h a p t e r o f t h i s p a p e r g i v e s a b r ie f i n t r o d u c t i o n t o t h e d e v e l o p m e n t o f f a u l t d i a g n o s i s a n d t h e b a s i c k n o w l e d g e o f it .t h e s e c o n d c h a p t e r d ic u s s e s t h e f a u l t d i a g n o s i s b a s e d o n t h e e x p e rt s y s t e m .t h e t h i r d c h a p t e r i n t r o d u c e s t h e f a u l t d i a g n o s i s b a s e d o n t h e f a u lt t r e e a n a l y s i s .t h e f o rt h c h a p te r g i v e s t h e f a u l t d ia g n o s i s b a s e d o n t h e f u z z y s y s t e m . t h e f i ft h c h a p t e r a n a ly s i s t h e f a u l t d i a g n o s i s b a s e d o n t h e a r t i fi c i a l n e u r a l n e t w o r k i n d e t a i l .t h e l a s t c h a p t e r i s t h e m o s t i m p o r ta n t p a r t o f t h e p a p e r ,i n t h i s c h a p t e r i g i v e a n e w f a u l t d i a g n o s i s b a s e d o n t h e f u z z y n e u r a l n e t w o r k ,a n d a p p l i c a t e d i t i n t h e k j 1 5 a c o n t r o l s y s t e m ,o b t a i n t h e g o o d re s u lt . k e y w o r d s : f a u l t d i a g n o s i s , f u z z y n e u r a l n e t w o r k , c o n t r o l s y s t e m , f a u l t - s e c u r i ty 合 肥工业大学硕士论文 前 言 随着航空航天, 核电站, 机器人等高科技技术的迅猛发展, 系统的自 动化水 平日 益提高, 规模日 益扩大, 复杂性迅速提高, 同时投资也越来越大。 面对投资 巨大的复杂大型系统, 其可靠性, 可维修性和有效性显得越来越重要, 特别是航 空航天,矿井运输等,由于其特定的工作环境, 原则上要求只许成功不许失败, 对系统的安全性,可靠性和有效性提出了更高的要求。“ 切尔诺贝利”核电站事 故和“ 挑战者” 戈航天飞机的失事使得人们进一步认识到在大型复杂系统中引入 故障诊断技术的重要性, 近年来, 世界发生了多 起由于系统故障引起的事故, 如 美国的“ 德尔塔” 火箭的坠毁,欧洲“ 阿利亚娜” 火箭的飞行失败等, 这些都再 次向人们敲响了警钟。 而故障诊断技术为提高系统的可靠性, 可维修性和有效性 开辟了一条新的路径。 对于生产过程来说, 为避免某些生产过程发生故障而引起 整个生产过程的瘫痪, 必须在故障发生的开始迅速的予以警报, 为进一步决策提 供依据, 从而保证生产过程安全可靠的 进行。 因此建立故障诊断和检测技术无论 是对于工业还是对于军事,航空业都具有极其重要的意义。 近些年来, 国内外每年都有大量的文献报道这方面的 研究, 并且己 经取得了 一些有价值的成果, 但是由于问题的复杂性, 故障诊断技术是一门涉及到自 动化 控制理论, 计算机科学, 信号处理, 最优化理论, 人工智能等多学科的新型边缘 学科,仍然存在许多有待进一步研究的问题。 本文正是在这样的背景下, 对目 前常用的几种故障诊断技术进行了 深入的 研 究, 并对其中的一些技术进行了融合和改进, 并将这种改进后的技术成功的 应用 到合肥工业大学的“ k j 1 5 a矿井机车 运输控制系统” 中, 建立了 针对该系统的故 障诊断系统,取得了一定的实际效果。 当然由于本人的水平有限, 时间 仓促, 错误和不足之处在所难免, 敬请各位 老师和同学不吝赐教。 独 创性声 明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究 成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已 经发表或撰写过的研究成果, 也不包含为获得 一一造胆工业去全一一或其他教育机 构的学位或证书而使用过的材料.与我一同工作的同志对本研究所做的任何贡献均 已在论文中作了明确的说明并表示谢意. 学 位 论 文 作 者 签 名 : 窄凡签 字 日 期 :a . , 年 4 r 于 日 学位论文版权使用授权书 本 学 位 论 文作 者 完全了 解 崖耀s -t j *有 关 保 留 、 使 用 学 位 论 文 的 规 定 , 有 权 保 留 并 向 国 家 有 关 部 门 或 机 树 送 交 论 文 的 复 印 件 和 磁 盘 , 允 许 论 文 被 查 阅 和 借阅. 本人授权崖洲 2a 组消可以将学位论文的全郁或部分内容编入有关数据 库进行检索,可以采用影印、编印或扫描等复制手段保存、汇按学位论文。 ( 保密的学位论文在解密后适用本授权书) 学 位 论 文 作 者 。: 谁c 签 字 日 期 : a - 3 年 斗 月 a ) .日 签 宇日 期 : 1 -飞 年斗月 日 学位论文作者毕业后去向: 工作单位: 通 讯地址 : 电话 邮编 合肥工业大学硕士论文 致谢 本论文是在我的导师张维勇教授的精心指导下完成的, 三年来, 张教授无论 是在学习上, 还是在生活上都给了我极大的关心和帮助, 使我得以 顺利完成硕士 研究生阶段的学习。 在所取得每一点 成绩中 都 倾注了 张老师的大量心血。 张老 师 渊博的知识、 严谨的治学态度、 敏锐的学术思想、以 及积极进取的科研精神是我 终生学习的楷模。在此谨向张教授致以 衷心的感谢和崇高的 敬意! 特别 感谢 微 机所的 魏 臻 研 究 员 和 鲍 鸿 杰 老 师, 他 们一 直 给 与 我 许 多 学习 上 的 指导和帮助, 对于我完成毕业课题提出了 许多建设性的 意见, 与 他们相处的 经历 使我受益非浅,在此谨表示诚挚的感谢. 此外, 在论文撰写的过程中我还得到了 我的同学祝庚、 方涤非、 王琦、 马光 兵及师弟杨冬虎师妹唐恬恬的帮助. 在此表示感谢. 最后还要感谢我的父母和家人, 取得的成绩。 没有他们的支持与鼓励, 也就没有我今天所 台肥工业大学硕士学位论文 第一章控制系统故障诊断技术 1 1 故障诊断的概述 l - 1 1 故障诊断的历史与现状 系统的故障诊断技术是近四十年来发展起来的一门新兴学科。是为了适应工 程的实际需要而形成的各学科交叉的综合学科。 系统诊断的历史和人类对系统的维修方式紧紧的相连。在工业革命后相当长 的一段时期内,由于当时的生产规模,设备的技术水平和复杂程度都较低,系统 的利用率和维修费用都没有引起人们的重视,人类对系统的维修方式基本上都是 事后进行维修,即设备运行出现问题之后进行故障的分析和维护。二十世纪以后 由于大生产的发展,尤其是流水线生产方式韵出现,设备本身的技术水平和复杂 程度都大大地提高,系统故障对生产的影响显著增加。这样出现了定期维修,以 便在事故发生前加以处理。大约在六十年代,美国军方由于意识到定期维修的一 些弊病,开始变定期维修为预知维修,即在系统的正常运行过程中就开始进行监 护,以发现潜在的故障原因,及早采取措施,防止突发性故障的产生。军方的这 种主动维修方式,不仅大大地避免了灾难性的系统设备故障,而且避免了失修和 过剩维修,经济效益十分显著。这种维修方式很快被其它企业所仿效。系统的诊 断技术很快就发展了起来。 从科学的大环境来看,系统的故障诊断技术的产生也是各学科交叉发展的 必然。四十年代以来,人们的生产方式日益向大工业方向发展。在这种宏伟的大 背景下,系统论,混沌学等纷纷诞生,尤其是控制理论出现了一些重大的突破, 产生了一系列现代的控制方法。生产系统的庞大化和复杂化同时也暴露出一些问 题,即如何避免运行中故障的发生,这就要求有一门相应的诊断技术。同一时期, 电子技术,尤其是计算机技术的发展,为系统设备诊断提供了必要的技术基础。 六十年代,快速f o u r i e r 变换的出现,使得诊断技术的发展产生了飞跃。近年来, 传感器技术的发展,信号处理的系列技术,如各种滤波技术,各种谱分析技术, 人工智能的系列技术,如专家系统,模糊数学,神经网络等,以及其它技术在诊 断中的应用,使得系统诊断技术逐渐完善。 关于系统诊断的定义,从发展的观点说明比较合适。有3 个阶段一: ( 1 ) 设备状态检测( c o n d i t i o nm o n i t o r i n g ) ; ( 2 ) 设备状态检测与故障诊( c o n d i t i o nm o n i t o r i n g a n df a u l td i a g n o s i s ) ; ( 3 ) 现代管理( m o d e mm a n a g e r m e n t ) ,即把检测和诊断融入企业的管理信息系 统( m a n a g e r m e n ti n f o r m a t i o ns y s t e m ) 中去,这是系统诊断技术发展的最高阶段,预 示着该学科的发展方向。 目前,系统的故障诊断技术大致处于第( 2 ) 阶段的整理完善和向第( 3 ) 阶段的 过渡时期。 诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的一个热 点。从诊断技术的各分支技术来看,美国占有领先地位。美国的许多权威机构, 如美国机械工程师学会( a s m e ) ,美国宇航局( n a s a ) 等都参与了这一领域的研 究,投入了大量的资金。不少的高校和企业也都设立了诊断技术研究中心。美国 的一些公司,如b e n t l y , h p , s c i e n t i f i c a t a l a n t a 等,他们的监测产品基本上代表了 当今诊断技术的最高水平不仅具有完善的监测功能,而且具有较强的诊断功能, 在宇航,军事,化工等方面具有广泛的应用。其它的一些国家。诊断技术的发展 合肥工业大学硕士学位论文 也是各有特色,如英国在摩擦诊断方面,丹麦的b 辨识系统可能 采取的各种状态模式以 及它们和各单元状态的 对应关系, 识别这些模式之间的相 互关系。 ( 2 ) 选择顶事件和确定边界条件。人们不希望发生的显著影响系统的技术性 能, 经济性, 可靠性和安全性的故障事件可能不只一个, 在熟悉系统及其资料的 基础上, 做到既不遗漏, 又分清主次的把全部的重大故障事件一一列出, 再根据 分析的目的和故障判据确定本次分析的顶事件. ( 3 ) 建造故障树。 建造故障树的方法有两大类: 即演绎法和计算机辅助建树的合成法( 又称为 决策表法) .下面以演绎法为例说明建树的方法。 演绎法建树的方法是: 将已 经确定的顶事件写在顶部的 框内 作为第一级也就 是第一行, 再将导致顶事件发生的 全部必要而又充分的 直接原因( 包括 硬件故障, 环境因素, 人为差错等) 并列的置于顶事件的下面一级作为第二级也就是第二行, 用适当的事件符号表示, 并以相应的逻辑门与系统故障事件连结起来。 然后再将 导致第二行故障事件发生的全部充分而又必要的直接原因并列的放在第二行的 下面, 作为第三级也就是第三行, 并用适当的事件符号和逻辑门与第二行连结起 来, 如此逐行下去, 直到把最基本的原因 都分析出 来, 也就是最下面的底事件为 不可再分事件或无需再分事件。 此时 就形 成了 一个类似倒置形状树的 逻辑图, 在 这张逻辑图中,根是顶事件,节为中间事件,而叶子节点为底事件。 ( 4 ) 简化故障树. 一种简单的简化故障树的方法是通过去掉多余的逻辑门, 来简化故障树. 去 掉多余的逻辑事件的方法事件那些不经过逻辑门直接相连的一连串 事件, 只保留 下最下面的一个事件 ( 即最具体, 最直接的事件) 。 去除多余的逻辑门的方法是:凡是相邻两极的逻辑门 类型相同的均可以简 化。若 “ 与 ( 或)门”的下面有 “ 与 ( 或)门” ,则下一级的 “ 与 ( 或)门”及 其输出事件均可以去除, 它们的输入事件直接成为保留“ 与( 或) 门” 的输入事 件。除了上述的方法外,还有模块分解,早期不交等简化技术。 通过简化就可以得到一个反映系统主要逻辑关系的等效简化逻辑图。 对于大 型的复杂系统, 故障树的简化十分的重要。 如果一棵树含有较多的逻辑门和基本 事件, 其割集的总数将迅速的成几何级的 增加。 如一颗含有1 3 个或门, 5 9 个底 事件 ( 其中不重复的底事件2 5 个)的故障树共有7 2 1 5 6 个割集,这是一个相当 大的数量, 对它来求最小割集, 和计算顶事件的发生的概率等定性, 定量分析的 合肥工业大学硕士学位论文 计算量是相当巨 大的,即产生了 通常 所谓的“ 组合 爆炸” 。 对于 这样规模的 故障 树在进行求最小割集之前,必须进行简化。 3 . 3 . 2 . 1 故障树的简化方法 故障树简化的主要方法有: 模块分解法和早期不交化。 下面将分别对这两种 方法进行简单的介绍。 ( 1 ) 模块分解法i ir i: 模块分解法是一种最有效的故障树简化方法。 所谓的故障树的 模块就是至少 包含两个底事件的集合。 这些事件向 上可到达同一逻辑门( 称为模块的输出 或模 块的顶点) ,且必须通过此门才能达到顶事件, 模块没有来自 其余部分的输入, 也没有与其余部分相同的事件。 故障树的模块可以从整个故障树中分割下来, 单 独的列出最小的割集,和单独的计算“ 顶事件” 的概率。 而在原故障树中, 可以 用一个所谓的“ 准底事件”来代替这个分解出来的 模块, “ 准底事件”的概率即 取为这个模块的概率. 这样在经过了模块的分解后, 故障树的规模等于底事件的 个数加上 “ 准底事件” 的个数, 它显然小于原故障树的 规模. 在这种情况下, 我 们再给故障树进行定性和定量的分析, 这是的计算量也将按指数下降, 当然在进 行实际的故障树的分解时, 分解过的模块还可以进一步的分为子模块. 对于没有 重复事件的情况, 采用模块化技术可以简化故障树, 但对于有重复事件的故障树, 原则上说不可以直接用模块分解法, 因为拥有重复事件的地方是不可以进行模块 化的,在这种情况下,可以采用割顶点的方法加以 解决。 ( 2 ) 早期不交化 还有一种简化故障树的有效途径, 就是在建造故障树时就进行早期不交化处 理,不交化故障树的构建原则为:遇到原故障树中的“ 与门” , 此逻辑门及其输 入输出均不变。遇到 “ 或门” ,则对其输入作不交化处理。如果设 “ 或门”g下 有n 个输入, 其中有k 的底事件x i,x 2 . . . . x k , n - k 个逻辑门g y g 2 . . . . g -k , 对g的输 入不交化后, g的输入仍为n 个, 但除第一个输入x . 不变外, 其余n - 1 个输入变 为新增加的 “ 与门” ,这些 “ 与门”的输入分别为: ! x i x 2 , ! x i ! x 2 x i , ! x l ! x 2 . . . ! x k g i , ! x i ! x 2 . . . ! x k ! g i g 2 , ! x i ! x 2 . . . ! x k ! g i . . . ! g.k . l ! g n - k 故障树除了用图形符号描述之外, 也可以 通过结构函数用数学的形式加以描 述, 为了 使问题更加的简单化, 假设所研究的元部件和系统仅取正常和故障两种 状态,并假定各元部件的故障是相互独立的,设 x 。 表示底事件的状态变量, x 仅取0 和 1 两种状态,中为表示顶事件的状态向量,4) 也取0 , 1 两种状态,定 义: x 。 等于1 时表示底事件发生, 也就是元部件故障, 而当x i 等于0 时, 表示 底事件不发生, 及元部件正常: 巾 等于1 时 表示顶事件发生, 即 系统的状态正 常, 而当中 等于0 时, 表示顶事件不发生, 及系统工作正常。 所以 说, 顶事件的 状态4) 完全由 底事 件的 状态 x ( x = ( x i ,x 2 . . . . . x n ) ) 决定, 即 = ( x ) , 称( ( x ) 为故障树的结构函数。 3 .3 . 2 . 2故障树的构造方法 它是一种表示系统状态的布尔函数, 其自 变量为该系统组成单元的状态。 下 面介绍故障树的几种典型结构形式的布尔函数: ( 1 ) “ 或门”的结构函数 o f f ) 一 少, (n 为 底 事 件 的 0 ),当 x 仅 取( 0 , ) 两 值 时 , 中 ( x ) 也 合肥工业大学硕士学位论文 可 以 写 成o ( x ) = 卜艺 ( 1 - x ;) , 按 照 布 尔 运 算 的 规 则 , 由 该 结 构 可 以 看 出 , 对 1 =1 于 “ 或门”当 全部的 元部件有故障时 ( x i= 1 ) , 系统才产生故 障 ( (d ( x ) = 1 ) , 只要有一个部件是正常的工作 ( x i= o ) ,则系统正常 ( d) ( x ) = 0 ) , 这相当于可 靠性框图中分析法中的并联模型。 ( 2 ) “ 与门”的结构函数 武x) =( n为底事件的数) .当 x 仅取 ( 。 ,1 )两个值时 。nx,。 o (x ) = 1 一 i i ( 1 一 ) ,按 照 布 尔 运 算 法 则 , 只 要 有 一 个 元 部 件 有 故 障( x .= 1 ) , 则 系 统产生故障 ( (b = 1 ) ,只有当所有的元部件均正常 ( x i= 0 )时,系统才正常 ( 中 = 0 ) , 这相当于可靠性框图分析法中 的串 联模型。 ( 3 ) 当n 取k ( k 为式系统发生故障的最小事件数)的结构函数,即当e x i _ :, k 时,(b ( x ) = 1 , 而当为其它情况时,(b ( x ) = 。 。 也就是说, 只要故障的原 部 件数大于k , 系 统就产 生故障。 这相当 于 可 靠 性框图 分析中 的n 中 取k ( g ) 系 统 模 型。 3 .3 . 3 故障树的定性分析 故障树定性分析的目 的在于寻找 导致顶事件发生的原因 和原因的组合, 识别 导致顶事件发生的所有故障模式, 它 可以 帮助判断 潜在的故障, 用以 指导故障诊 断,改进运行和维修方案或修改设计。 3 .3 .3 . 1割集和最小割集 割集指的是 “ 故障树”中的一些底事件的集合,当这些底事件同时发生时, 顶事件必然发生。 最小割集指的是满足以 下条件的 割集: 若将割集所含的底事件 任意去掉一个它就不能再称为割集, 否 则该割集就不是 最小割 集。 对系统 进行定 性的分析主要是为了弄清系统 ( 或设备) 出 现某种故障 ( 即顶事件) 有多少种可 能, 即一种失效模式, 一个最小割集则是指包含有最少数量, 而又为必需的 底事 件的割集, 而全部最小割集的完整集合则代表了 给定系统的全部故障, 因而最小 割集的意义就在于为我们描绘出了系统中的最薄弱环节, 同时指出了系统的故障 原因,定性分析的主要任务也就是确定系统的最小割集。 3 .3 .3 . 2求最小割集的算法ji l l ( 1 ) 下行法 ( f u s s e u - v e s e l y 算法) 这个算法的主要特点是:根据故障树的实际结构, 从顶事件开始, 逐级向 下 寻找,找出割集.因为只就上下的相邻的两级来看, “ 与门” 只增加割集的阶数 ( 也就是割集所包含的底事件的个数) , 而不会增加割集的个数。 “ 或门” 只增加 割集的个数, 不增加割集的阶数。 所以 规定 在下 行的 过程中, 顺序的 将逻辑门 的 输出事件置换为输入事件, 遇到“ 与门” 的就将其输入排在同一行 ( 输入事件的 交( 布尔积) ) , 遇到“ 或门” 就将其输入各自 排成一行( 输入事件的并 布尔和), 这样直到全部换为底事件为止, 这样得到的割集, 通过两两比较, 划去那些非最 小割集,剩下的即为该故障树的全部最小割集。 ( 2 ) 上行法 ( s e n a n d e r e s 算法) 台肥下业大学硕士学位论文 可以写成( ) :1 一y ( 1 一鲋) ,按照布尔运算的规则,由该结构可以看出,对 百 于“或门”当全部的元部件有故障时( x 产1 ) ,系统才产生故障( 中( x ) = 1 ) , 只要有一个部件是正常的工作( x = 0 ) ,则系统正常( 中( x ) = 0 ) ,这相当于可 靠性框图中分析法中的并联模型。 ( 2 ) “与门”的结构函数 驴( x ) = n 拍( n 为底事件的数) 当x i 仅取( 0 。1 ) 两个值时, 担l 矽( x ) = l 一兀( 1 一* ) ,按照布尔运算法则,只要有一个元部件有故障( x i = 1 ) ,则系 l o i 统产生故障( 巾= 1 ) ,只有当所有的元部件均正常( x f 0 ) 时,系统才正常( 巾 = 0 ) ,这相当于可靠性框图分析法中的串联模型。 ( 3 ) 当n 取k ( k 为式系统发生故障的最小事件数) 的结构函数,即当x i k 时,巾( x ) = l ,而当为其它情况时,中( x ) = 0 。也就是说,只要故障的原部 件数大于k ,系统就产生故障。这相当于可靠性框图分析中的1 3 中取k ( g ) 系统模 型。 3 3 3 故障树的定性分析 故障树定性分析的目的在于寻找导致顶事件发生的原因和原因的组合,识别 导致顶事件发生的所有故障模式,它可以帮助判断潜在的故障,用以指导故障诊 断,改进运行和维修方案或修改设计。 3 3 3 1 割集和最小割集 割集指的是“故障树”中的一些底事件的集合,当这些底事件同时发生时, 顶事件必然发生。最小割集指的是满足以下条件的割集:若将割集所含的底事件 任意去掉一个它就不能再称为割集,否则该割集就不是最小割集。对系统进行定 性的分析主要是为了弄清系统( 或设备) 出现某种故障( 即顶事件) 有多少种可 能,即种失效模式,一个最小割集则是指包含有最少数量,而又为必需的底事 件的割集,而全部最小割集的完整集合则代表了给定系统的全部故障,因而最小 割集的意义就在于为我们描绘出了系统中的最薄弱环节,同时指出了系统的故障 原因,定性分析的主要任务也就是确定系统的最小割集。 3 3 3 2 求最小割集的算法,l ( 1 ) 下行法( f u s s e u v e s e l y 算法) 这个算法的主要特点是:根据故障树的实际结构,从顶事件开始,逐级向下 寻找,找出割集。因为只就上下的相邻的两级来看,“与门”只增加割集的阶数 ( 也就是割集所包含的底事件的个数) ,而不会增加割集的个数。“或门”只增加 割集的个数,不增加割集的阶数。所以规定在下行的过程中,顺序的将逻辑门的 输出事件置换为输入事件,遇到“与门”的就将其输入排在同一行( 输入事件的 交( 布尔积) ) ,遇到“或门”就将其输入各自排成一行( 输入事件的并( 布尔和) ) , 这样直到全部换为底事件为止,这样得到的割集,通过两两比较,划去那些非最 小割集,剩下的即为该故障树的全部最小割集。 ( 2 ) 上行法( s e n a n d e r e s 算法) 合肥= :1 _ 业大学硕士学位论文 上行法是从底事件开始,自下而上逐步的进行事件集合运算,将“或门” 输出事件表示为输入事件的“并”( 布尔和) ,将“与门”输出事件表示为输入事 件的“交”( 布尔积) ,这样逐层向上带入,在逐步带入的过程或者最后,按照布 尔代数的吸收律和等幂律来简化,将顶事件简化为底事件积之和的最简式,其中 的每一积项对应于故障树的一个最小割集。全部的积项即是故障树的所有的最小 割集。 ( 3 ) 布尔割集法 对于复杂系统故障树的最小割集,用手工运算工作量较大。在这种情况下, 需要用严格的计算机逻辑程序,即采用布尔割集法( b o o l e a n l n d i c a t e d c u t s e t 缩 写为b i c s ) ,来确定最小割集。首先我们需要定义以下的符号: ( i ) 故障树中的逻辑门 巾底事件编号 9 。逻辑门u 的第i 个输入 入。逻辑门u 的输入数目 x 第x 个b i c s 。表示第x 个b i c s 中的第y 个入口变量 x 。一已使用的x 的最大值 y 。在第x 个b i c s 中已使用的最大的y 值 其中( i 】,由,几。,厶和逻辑门的类型( “与门”,“或门”) 是所给故障树的 输入信息。每个b i c s 都能用矩阵的各行表示。而求b i c s 的程序是:构成 矩阵的第一行第一列元素记为u 即第一个集合,它等于紧连着顶事件下面的逻 辑门u 的值,由此出发。我们的目标是消除矩阵中的全部u 值,当这些步骤完 成以后,留在矩阵中的都是基本事件,这样就可以得到所有的b i c s 。而为了 清除矩阵中的u 值,应该将m 值在矩阵中的位置编号,并注明x , y 和u 值。 当。是“与门”时,矩阵中的( x ,y m “叫) 元素按下式规定符号记入: f 。= 成, i j ,y 。小川= p m t | r , i = 2 ,九 式中的y m “随着n 值的增大而逐步增大。当,是“或门”的情况下, 矩阵的( x 。q y ) 元素按下式规定符号计入: j a w = 成,f 卜。广匕竺z 。裳孑 合肥工业大学硕士学位论文 入所有的底事件。 3 3 3 3 求最小割集的运算比较 在求得全部的最小割集之后,如果有足够的数据,能够对故障树中的各个底 事件发生的概率作出推断,则可进一步作定性分析,数据不足时,可按以下的原 则进行定性比较,以便将定性比较的结果用于指导故障诊断,确定维修次序以及 提高改进系统的方向。 首先根据每个底事件最小割集所含底事件数目排序,在各个底事件发生概率 较小,差别相对不大的条件下: ( 1 ) 阶数越小的割集越重要。 ( 2 ) 低阶最小割集中出现的底事件比高阶最小割集的底事件重要。 ( 3 ) 在同阶最小割集的情况下,在不同最小割集中重复出现的次数越多地底事 件越重要。 3 3 4 故障树的定量计算 故障树定量化的任务就是要计算系统顶事件发生的概率,即系统的一些可靠 性的指标,复杂系统的故障定量计算一般是很复杂的,特别是当故障不服从指数 分布时,难以用解析法求得精确的结果,这时可用蒙特卡洛法进行估算。 3 3 4 1 事件和与积的概率计算公式 设最小割集n 一,n :,n r 的发生概率为q q 2 q r ,如果n t ( i = 从l 到n ) 之间相互 独立,则这些事件的和与积的概率可按下式计算: 积的概率:p ( l n 2 ,) = g - q 2 q r 和的概率:p ( l + n 2 + m ) = 卜( 1 一q 0 ( 1 一9 2 ) ( 1 一g ,) 如果最小割集n i 时相交的,即底事件在最小割集中可能重复出现,此时; p ( n u 2 u u ,) = p ( n o - p ( f m ) + ( 一1 ) p ( n t n 2 m ) ( 3 - 3 ) ,- l i j - 2 3 3 4 2 由最小割集结构函数求系统的失效率 ( 1 ) 最小割集之间的不相交的情况 假定已求出了故障树的全部最小割集n l ,n 2 n 。并且假定在一个很短的时间 间隔内不考虑同时发生两个或两个以上的元部件故障,且各最小割集间没有重复 出现的底事件,也就是假设最小割集之间是不相交的,则用最小割集表示的顶事 件的结构函数为: , t = ( x ) = u m ( ,)( 3 4 ) = l 顶事件的t 的发生概率为: 式中 p ( t ) 观( f ) - 彤( 翮。善( 马删 ( 3 5 ) 合肥工业大学硕士学位论文 入所有的底事件。 3 .3 .3 . 3求最小割集的运算比较 在求得全部的最小割集之后, 如果有足够的数据, 能够对故障树中的各个底 事件发生的概率作出推断, 则可进一步作定性分析, 数据不足时, 可按以下的原 则进行定性比较, 以便将定性比较的结果用于指导故障诊断, 确定维修次序以及 提高改进系统的方向。 首先根据每个底事件最小割集所含底事件数目 排序, 在各个底事件发生概率 较小,差别相对不大的条件下: ( 1 ) 阶数越小的割集越重要。 ( 2 ) 低阶最小割集中出现的底事件比高阶最小割集的 底事件重要. ( 3 ) 在同阶最小割集的情况下, 在不同 最小割集中重复出 现的次数越多地底事 件越重要。 3 .3 .4 故障树的定量计算 故障树定量化的 任务就是要计算系 统顶事件发生的 概率,即 系统的 一些可 靠 性的指标, 复杂系统的故障定量计算一般是很复杂的, 特别是当故障不服从指数 分布时,难以用解析法求得精确的结果, 这时可用蒙特卡洛法进行估算. 3 .3 . 4 . 1 事件和与积的概率计算公式 设 最小 割集n i ,n 2 . . . . n r 的 发生 概 率为ql, qz,二q, 如 果n +( i = 从1 到n ) 之间 相 互 独立,则这些事件的和与积的概率可按下式计算: 积的 概率:p ( n i - n 2 . . . .二 n . ) = g i - q 2 . . . . . . q . 和的 概率:p ( n i + n 2 +. .n . ) = 1 一 ( 1 一 q i) ( 1 一 q 2 ) 二 ” ( 1 一 q ) 如果最小割集n i 时相交的,即 底事件在最小割集中可能重复出 现,此时: p ( n i u n 2 u . u n . ) = 艺p ( n i) 一 艺 p ( n i - n j ) + .( - 1 ) 一 p ( n i - n 2 . . . n . ) ( 3 - 3 ) _ 1 i j - 2 3 .3 .4 .2 由 最小割集结构函数求系统的 失效率 ( 1 ) 最小割集之间的不相交的情况 假定己 求出了故障树的 全部最小 割 集n i,n 2 . 、 并 且假定 在一 个很短的时间 间隔内不考虑同时发生两个或两个以 上的元部件故障, 且各最小割集间没有重复 出 现的底事件, 也就是假设最小割集之间是不相交的, 则用最小割集表示的顶事 件的结构函数为: t = o ( x ) = u n i ( r ) j - t 顶事件的t的发生概率为: ( 3 - 4 ) p ( t ) = f( ) = p lo (x ) y ( ii f (t)j j isnj ( 3 - 5 ) 式中 合肥工业大学硕士学位论文 p ( n (t ) 一 f l f ( r) p ( n b ( t ) ) 表示 在时 刻t 第j 个最 小 割 集 存 在 的 概 率, f ( t) 表 示 在 时 刻t 第j 个 最 小割集中第i 个底事件 ( 部件) 故障的 概率, e ( t ) 表示系统故障的 概率, k 为最 小割集数。 ( 2 ) 最小割集之间相交的情况 精确计算顶事件发生的概率 当最小割集之间相交的情况下精确计算顶事件发生概率的一种方法就是化 相交和为不交和, 再求顶事件发生的概率。 根据集合的理论, 化相交和为不交和 的方法由两种: ( a ) 直接化法: 对于割 集n i( i 从1 到k ) 相交的 情 况, 顶 事 件的 结 构函 数 为: ( 3 - 6 ) 进行不交化后,得: t = ni + ! nin2 + . . . + ! ni ! n2 . . . ! nk . ink 将该式写成递推的形式,得到不交化的递推算法。 ( b ) 递推算法: t = n i+ !n i!n 2. . . . . . . !n i!n 2 .!n k-in k 瞥f ( 1 ) + f (2 ) +.+ f ( k )= 艺 f ( i) (3 - 7 ) 式中的f ( i ) 可由 下式递推求得 f ( i ) = c ( i ) n i ( i 从1 到k ) c ( i ) = 1 ;当i 等于1 时 c ( i ) = c ( i - 1 ) ! n i- i;当i 从2 到k 时 证:由递推算式易得 c ( 1 ) = 1 c ( 2 ) = !n, c ( 3 ) = ! ni ! n 2 c ( k ) = ! n i !n 2 . . . ! n k f ( 1 ) = c ( 1 ) n i= n l f ( 2 ) = c ( 2 ) n 2 = ! n in 2 f ( k ) = c ( k ) n k = ! n i !n 2 . . . . ! n 一 ,n k 代入t中可得与直接化法同样的结果,证完毕! 近似计算相交割集顶事件的概率 对于存在相交割集的情况下, 当故障树中的最小割集数较多时, 即使使用直 接化法或递推化法将相交的和化为不交的和, 对于许多工程上的问题, 这种计算式不必要的 计算量也是相当的惊人的。 实际上 , 因为底事件的数据往往就是不准 确的, 用底事件的数据计算顶事件的发生概率值时, 精确计算已没有什么实际的 合肥工 业大 学硕士学位论文 意义。 而且在一般的情况下, 人们总是把产品设计的可靠度比较高, 因而事件的 不可靠概率 ( 或称为失效率)是很小的。而且计算公式为: p ( t ) = 艺p ( n ) 一 i p ( n n , ) +艺 p ( n d vin i) + 二 + ( - 1 ) 一 ,p ( n in e .n k ) (3 - 8 ) i = 1 i 0 ( 1 , 一 x ) = 1 , 0 ( 1 , 一 x ) 一 0 ( 0 1 - 一 x) = 1 一 x) = 0 ( d ) 0 ( 0 一 x) = 1 -+ ( 1 , 一 x ) = 一个由n个部件组成的系统, 0 , 武1 , 一 x) 一 o ( 0 l 一 x ) 一 x) =-1 当 第i 个部件处于某一状态时 部 件可能 有2 - , 种状态 组合。 显然结 构 重 要 度是 ( a ) 发 生 的 次 数 总 和 其余的 ( n - 1 ) 故结构重要 度可作为第1 个部件对系统故障贡献大小的量度。 3 . 4本章小结 本章的主要工作是研究故障诊断中的 故障树分 析. 首先本章介绍了 一些故障 的逻辑诊断作为预先的铺垫, 在此基础上, 详细的说明了故障树分析的全部过程 包括故障树的建造; 故障树的简化; 故障树的定性分析和定量计算等。 本章特别 还对故障树建模过程中可能遇到的一些技术难题作了 深入的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论