(控制理论与控制工程专业论文)多轴多电机系统的自适应性研究.pdf_第1页
(控制理论与控制工程专业论文)多轴多电机系统的自适应性研究.pdf_第2页
(控制理论与控制工程专业论文)多轴多电机系统的自适应性研究.pdf_第3页
(控制理论与控制工程专业论文)多轴多电机系统的自适应性研究.pdf_第4页
(控制理论与控制工程专业论文)多轴多电机系统的自适应性研究.pdf_第5页
已阅读5页,还剩50页未读 继续免费阅读

(控制理论与控制工程专业论文)多轴多电机系统的自适应性研究.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

武汉科技大学硕士学位论文第1 页 摘要 随着传动技术的发展,多轴多电机传动在各领域内得到广泛的应用。为了提高多电机 传动系统的动态和稳态性能,即提高系统的自适应性,以满足一些特定系统对于多电机同 步系统的要求,多电机同步控制技术的研究变得同趋重要。本文对转炉倾动系统的多电机 同步控制技术进行了研究 采用无速度传感器矢量控制技术控制转炉倾动系统的四台电机,主从模式运行,从机 以主机为参考模型。各个电机的特性和模型参数存在差异,为解决这种差异造成的参数失 配问题,本文采用神经网络控制器优化控制参数,使从机能够很好的与主机同步运行。 在高速电机磁场可以直接根据电机反电势计算获得,在低速( 特别是零频附近) ,定子 磁通的计算较为困难:而在零频,理论上定子磁通是不可观测的。针对这一问题,本文提 出采用状态观测器分析估算电机接近零频时的磁通,控制精度得到很大的提高。 本文详细的阐述了多电机系统的应用情况,以及神经网络在多电机系统下的应用,分 析了状态观测器在采用无速度传感器矢量控制技术电机接近零频时的应用,并使用多台电 机进行实验,实验效果表明运用智能控制能够明显提高多电机系统自适应性。 关键词:多轴多电机;转炉倾动;神经网络:状态观测器;无速度传感器矢量控制 第1 i 页武汉科技大学硕士学位论文 a b s t r a c t w i t hm ed e v e l o p m e n to ft h et r a n s m i s s i o nt e c h n o l o g y , m u l t i - a x i sm u l t i 。m o t o rd r i v ea re w i d e l yu s e di na l ls e c t o r s i no r d e rt ob em o r ed y n a m i ca n dm o r es t e a d yp e r f o r m a n c ei nt h e e l e c t r i c a lt r a n s m i s s i o ns y s t e m ,t h a ti s ,i n c r e a s et h es y s t e m sa d a p t a b i l i t yt om e e ts p e c i f i cs y s t e m f o rs i m u l t a n e o u sm u l t i m o t o rs y s t e mr e q u i r e m e n t s m u l t i - m o t o rc e n t r e lt e c h n o l o g yh a sb e c o m e i n c r e a s i n g l yi m p o r t a n t i nt h i sp a p e r , t h ec o n v e r t e rt i l t i n gs y s t e mo fm u l t i s y n c h r o n o u sm o t o r c o n t r o lt e c h n o l o g yh a sb e e ns t u d i e d u s ec l o s e d - l o o ps p e e dc o n t r o lw i t h o u te n c o d e rt e c h n o l o g yt oc o n t r o lc o n v e r t e rt i l t i n go ft h e f o u re l e c t r i c a ls y s t e m s ,m a s t e r - s l a v em o d ef r o mt h em a c h i n ea sar e f e r e n c em o d e li no r d e rt o h o s t v a r i o u se l e c t r i c a lc h a r a c t e r i s t i c sa n dm o d e lp a r a m e t e r sa r ed i f f e r e n t ,t or e s o l v et h e d i f f e r e n c e sc a u s e db yt h em i s m a t c hp a r a m e t e r so ft h ep r o b l e m ,u s i n gn e u r a ln e t w o r kc o n t r o l l e r o p t i m i z e dc o n t r o lp a r a m e t e r sf r o mt h em a c h i n e t om a k eag o o dh o s ta n da tt h es a m ep a c e i nt h eh i g h - s p e e dm o t o rc o n d i t i o nt h em a g n e t i cf i e l dc a nb ed i r e c t l yu n d e rt h ee m fw a s c a l c u l a t e di nl o w - s p e e d ( e s p e c i a l l yn e a rz e r of r e q u e n c y ) ,t h es t a t o rf l u xc a l c u l a t i o nm o r e d i f f i c u l t ;i nt h ez b t o f r e q u e n c y , i nt h e o r y ,t h es t a t o rf l u xc a nn o tb eo b s e r v e d i nr e s p o n s et ot h i s p r o b l e m ,t h i sp a p e ra n a l y s i so ft h eu s eo fs t a t e o b s e r v e re s t i m a t e sc l o s et oz e r oe l e c t r i c a l f r e q u e n c ya tt h et i m eo ff l u x ,c o n t r o lh a sb e e ng r e a t l yi m p r o v e da c c u r a c y t h i sa r t i c l ed e s c r i b e si nd e t a i lt h em u l t i m o t o rs y s t e m ,a sw e l la st h en e u r a ln e t w o r k si nt h e m u l t i m o t o rs y s t e mu n d e rt h ea p p l i c a t i o no fa n a l y s i so ft h es t a t eo b s e r v e ri nt h eu s eo f c l o s e d - l o o ps p e e dc o n t r o lo fm o t o rt e c h n o l o g yi sc l o s et oz e r o - f r e q u e n c ya p p l i c a t i o n s ,a n dt h e u s eo fm u l t i p l em o t o re x p e r i m e n t ,e x p e r i m e n tr e s u l t ss h o wt h a tt h eu s eo fi n t e l l i g e n tc o n t r o lc a n s i g n i f i c a n t l yi n c r e a s et h en u m b e ro fm o t o ra d a p t i v es y s t e m k e y w o r d s :m u l t i - - a x i sm u l t i - m o t o r ;c o n v e r t e rt i l t i n gs y s t e m ;n e u r a ln e t w o r k s ;s t a t eo b s e r v e r ; c l o s e d l o o ps p e e dc o n t r o lw i t h o u te n c o d e r 武汉科技大学 研究生学位论文创新性声明 本人郑重声明:所呈交的学位论文是本人在导师指导下,独立进行研 究所取得的成果。除了文中已经注明引用的内容或属合作研究共同完成的 工作外,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果。 对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。 申请学位论文与资料若有不实之处,本人承担一切相关责任。 论文作者签名:缝日期:邳:丝呈! 研究生学位论文版权使用授权书 本论文的研究成果归武汉科技大学所有,其研究内容不得以其它单位 的名义发表。本人完全了解武汉科技大学有关保留、使用学位论文的规定, 同意学校保留并向有关部门( 按照武汉科技大学关于研究生学位论文收录 工作的规定执行) 送交论文的复印件和电子版本,允许论文被查阅和借阅, 同意学校将本论文的全部或部分内容编入有关数据库进行检索。 论文作者签名: 指导教师签名: 日 期: 武汉科技大学硕士学位论文第1 页 1 1 多电机同步系统的发展情况 第一章概述 随着近年来工业的发展,对各种机械性能和产品质量的要求逐渐提高,单单针对一台 电机的控制在某些场合已经不能满足现代高科技发展的要求,而需要人们控制多台电机, 让其更好的协调运行。保持多电机协调运转的两种方式:一种是机械方式,另一种是电方 式。采用机械协调传动时,由于机械连接牢固可靠,得到较多的应用。但机械传动方式对 一些要求高精度动态定位的控制系统难以取得好的控制效果。于此相反,电方式的多电机 的协调控制使用更加灵活。 对于电方式的多轴多电机协调控制的研究是要深入到速度和力矩的双重协调控制研 究,它的研究将为军事,航空以及一般工业领域等需要统一动作功能的多电机提供协调控 制技术。例如它对航天器的对接,未来的智能化雷达群,火炮群等的协调控制,柔性机械, 高性能的数控技术,机器人控制以及恶劣环境下的电机运行状况的重现和高速加工中的动 态更换刀具等。高性能的协调控制还可以提高防止,冶金,机械,造纸,印刷等行业产品 的质量和成品率,所有这些都离不丌多电机的协调控制。 在工业场频中,传动控制是机械加工控制系统的基础,一个机械系统有多个轴进需要 行传动控制。对这些轴的控制就是控制驱动轴的电动机。在这些传动系统中,最常见的控 制算法是多电机非交叉耦合控制算法,但由于各个电机的动态性能也是不断在变化的,因 此针对提高每个电机的控制精度,提出神经网络控制策略u 1 。 由于同步控制设计到控制多个驱动轴,也就是多个电机,因此多变量控制成为同步控 制的基本控制算法。这种控制方式主要有两种结构方式:等状态方式和主从方式。在等状 态方式下的同步控制器是以同等的方式对待每一个控制电机。在主从控制方式下控制器根 据主机运行状态调节自身运行参数使从机能和主机保持协调运行。 转炉倾动控制系统设计方案 由于制造工艺和电机特性细微变化,以及机械磨损偏差导致机械传动差异等原因,很 难保证四台电机参数一致,导致模型失配,所以采用传统的p i d 控制方式,转炉倾动系统 的四台电机速度和力矩很难同步,影响转炉系统的稳定运行,严重时会产生故障,因此我 们提出了采用全数字控制器的神经网络主从控制方法解决问题:先设定其中一台电机为主 控制电机,其它三台为从控制电机。主电机速度和力矩采用传统的最优化p i d 调节模式, 三台从电机以主电机为参考模型,采用模型参考神经网络自适应方法调节从机的控制参 数,实现主机速度同步和力矩跟随。 在现场运行中,电机在静态和动态时参数波动较大,有时达到甚至超过2 0 。无速度 传感器矢量控制在电机接近零速时变频器内部模块无法准确计算电枢电阻和励磁回路电 第2 页武汉科技大学硕士学位论文 阻,不能计算定子磁通,如果还按照原有控制方案难以得到好的控制效果,系统也将很难 正常运行。高速电机磁场可以直接根据电机反电势计算获得,在低速( 特别是零频附近) 定 子磁通的计算较为困难;而在零频,理论上定子磁通是不可观测的心】【1 4 】。 采用状态观测器对主机励磁回路磁通进行估算。当电机运行速度高于一定值时,系统 的特性比较稳定,系统模型误差很小,此时状态观测器不参与计算;当系统速度接近零速 时,利用状态观测器估算励磁回路磁通,从而调节电机转矩,使之满足给定。 1 3 本文主要的研究工作 本文首先分析了原转炉倾动系统存在的问题,针对这些问题,本文提出了智能控制算 法,包括基于神经网络的多电机同步控制方案,即提出了利用模型参考自适应神经网络p i d 控制模式的电机同步运行,并在电机接近零速时使用状态观测器估算电机定子磁通,提高 多电机系统的控制精度。系统实现由全数字直流控制器和自编软件包完成。 武汉科技大学硕士学位论文第3 页 第二章神经网络建模及其应用 2 1 神经网络的研究与发展 2 1 1 神经网络的诞生 早在2 0 世纪初,人们就已经发现人脑的工作方式与现在的计算机是不同的。人脑是 由极大量基本单元( 称之为神经元) 经过复杂的相互连接而成的一种高度复杂的、非线性 的、并行处理的信息处理系统。人工神经网络,是借鉴人脑的结构和特点,通过大量简单 处理单元( 神经元或节点) 互连组成的大规模并行分布式信息处理和非线性动力学系统。它 具有巨量并行性、结构可变性、高度非线性、自学习性和自组织性等特点。因此,它能解 决常规信息处理方法难以解决或无法解决的问题,尤其是那些属于思维( 形象思维) 、推理 及意识方面的问题瞄1 。 在1 9 4 3 年精神病学家和神经解剖学家m c c u ll o c h 与数学家p i t t s 在数学生物物理学 会刊 b u l l e t i no fm a t h e m a t i c a lb i o p h y s i c s 上发表文章,总结了生物神经元的一些 基本生理特征,提出了形式神经元的数学描述与结构,即m p 模型。他们的神经元模型假 定遵循一种所谓“有或无( a l l o r - n o n e ) 规则。如果如此简单的神经元数目足够多和适 当设置突触连接并且同步操作,m c c u l l o c h 和p i t t s 证明这样构成的网络原则上可以计算 任何可计算函数。这是一个有重大意义的结果,有了它就标志着神经网络和人工智能学科 的诞生。 2 1 2 神经网络的发展 自2 0 世纪4 0 年代以来,它的发展经历了一条由兴起、萧条和兴盛三个阶段构成的曲 折道路,从8 0 年代初,神经网络研究的复兴,也带来了神经网络控制研究的迅速发展。 尤其是从1 9 8 6 年r u m e l h a r t 的突破性研究以来,在控制领域,将神经网络与控制技术相 结合也取得了许多令人鼓舞的结果。研究方法不断涌现,理论探索和工程应用并驾齐驱, 同时也引起了人们对神经网络控制的鲁帮性和稳定性的极大关注。在这个过程中,h u n t , n a r e n d r a 和k o s k o 等人在神经网络控制方面做了大量丌拓性的工作。这些先驱者们的研究 工作给神经网络控制理论的发展与应用奠定了坚实的基础,具有重要的里程碑的意义。高 度非线性、自学习性和自组织性等特点。因此,它能解决常规信息处理方法难以解决或无 法解决的问题,尤其是那些属于思维( 形象思维) 、推理及意识方面的问题n 们u 副。 神经网络控制的基本思想是从仿生学的角度,模拟人脑神经系统的运作方式,使机器 具有人脑那样的感知,学习和推理能力。其实维纳早在c y b e r n e t i c s 一书中,就揭示 了机器和生物系统所共同遵守的信息与控制规律,为人工神经网络的应用提供了理论依 据。对控制科学而言,神经网络的巨大吸引力在于: 第4 页武汉科技大学硕士学位论文 ( 1 ) 神经网络本质上是非线性系统,能够充分逼近任意复杂的非线性关系。 ( 2 ) 具有高度的自适应性和自组织性,能够学习和适应严重不确定性系统的动态特性。 ( 3 ) 系统信息等势分布存贮在网络的各神经元及其连接权中,故有很强的鲁棒性和容 错能力。 ( 4 ) 信息的并行处理方式使得快速进行大量运算成为可能。 这些特点说明神经网络在解决高度非线性和严重不确定性系统的控制方面有巨大潜 力。可以说,采用传统控制理论解决的各种实际问题,几乎都可以用神经网络控制来解决, 而许多传统控制技术不能解决的问题也可以用神经网络方法来解决。目前,神经网络控制 领域许多成功的应用事例使人们看到了智能控制时代的到来。当然,由于受到当前神经网 络硬件发展的制约,大规模应用的时代尚待时日;但是,具备简单功能的神经片的成功研 制已经使人们都到了很大的鼓舞口】t 【l 。 2 2 神经网络与系统建模和控制 2 2 1 神经网络建模 系统建模和辨识是控制理论的基本问题。过去几十年中,人们对线性系统的建模和辨 识进行了深入的研究,总结了一整套成熟的辨识算法,可以建立具有较高可靠性的模型。 然而在现实世界中,非线性是普遍存在的,而线性模型只是对非线性对象的一种简化和近 似。因此当系统非线性严重且我们期望得到高品质的控制效果时,建立性能良好的非线性 模型就显得至关重要。然而,利用传统的辨识方法要作到这一点,无论是在理论研究还是 在工程实践中都存在着极大的困难。 相比之下,神经网络在这方面显示了明显的优越性。今年来,人们将神经网络模型引 入非线性系统建模和辨识中,利用神经网络所具有的对任意非线性映射的任意逼近能力, 来模拟实际系统的输入一输出关系;而利用神经网络的自学习,自适应能力,可以方便地 给出工程上易于实现的学习算法,经过训练得到动态系统的正向和逆向模型。 与传统非线性辨识方法不同的是,神经网络辨识不受非线性模型的限制。它依据被控 系统的输入输出数据对,通过学习得到一个描述系统输入输出之间存在着怎样的数学关 系。这是目前非线性系统辨识中一个引人注目的新途径。由于多层前馈神经网络具有逼近 任意非线性映射的能力,因此目前自系统辨识和建模中应用最多的是多层前馈网络。 n a r e n d r a 等人在其经典性文章中,阐明了多层前馈网络用于非线性系统辨识的可能性,并 提出了神经网络用于非线性系统辨识的一般性框架和方法,为我们进行复杂系统的神经网 络建模与辨识奠定了理论基础畸m 8 h 2 引。 从控制角度看,神经网络建模有两种情况:正向建模和逆向建模。下面给初这两种情 况下神经网络建模的方法和结构。 2 2 1 1 正向建模 正向建模是指训练神经网络来学习系统的正向动态特性,得到的模型称为系统的正向 武汉科技大学硕士学位论文第5 页 模型,其训练结构如图2 1 所示,其中神经网络与被辨识系统具有相同的输入,二者输出 的误差作为网络的训练信号。这是一个教授学习问题。学习结束后,神经网络模型与实际 系统具有相同输入输出映射特性。神经网络可采用多层前馈网络,也可以选用具有局部逼 近能力的神经网络,如小脑模型关节控制器( c m a c ) 等。学习算法可才用误差反传学习算 法及其各种改进形式驯。 图2 1 神经网络正向建模 在控制系统中,被辨识对象通常是动态系统。如何进行动态系统的建模,一般有两种 方法。一是直接利用动态递归神经网络进行建模,模型的输出作为网络的输入,这种方法 称为并行建模法;二是采用n a r m a x 模型: y ( t + 1 ) = f c y c t ) ,y ( t n + 1 ) ;“( f ) ,u ( t m + 1 ) ) ( 2 1 ) 利用静态神经网络学习该模型的输入输出非线性函数f ( 木) ,并将系统的输入输出延 时量少( f ) ,y ( t n + 1 ) ;“( f ) ,u ( t m + 1 ) 作为网络的增广输入。这时图2 1 所示方 法也称为串一并行建模法,目前这种方法比较常用。 2 2 1 2 逆向建模 逆向建模是神经网络控制系统设计经常用到的方法。假定表示系统输入输出特性的非 线性函数( 2 1 ) 式可逆,则对于t + l 时刻期望的输出而言,t 时刻的控制输入为 “( f ) = f - 1 ( y ( f ) ,y ( t n + 1 ) ;y d ( f + 1 ) ,u ( t 一1 ) ,u ( t m + 1 ) ) ( 2 2 ) 神经网络逆建模就是利用神经网络学习上式中未知非线性函数厂- 1 ( ) 。通常有两种方 法:直接逆建模和正一逆建模法心。 直接逆建模是将系统的输出作为网络的输入,网络的输出与系统的输入进行比较,并 用相应的误差来训练网络而建立系统的逆模型。其结构如图2 2 ( a ) 所示。这种方法在系 统的逆不存在时,可能会得到一个不可靠的逆模型。解决的办法是采用正一逆建模法。该 方法采用了一个已知的系统的正向模型,如图2 2 ( b ) 所示。逆模型网络与系统串联,网 络的输入未知系统的期望输出,训练误差采用系统的期望输出和实际输出之差,或与己知 的神经网络正向模型的输出之差。这种方法使逆模型网络沿期望输出轨迹进行学习,克服 了采用系统输入进行训练所带来的问题。对不可逆系统,也可以通过反向传播通道正 向模型,得到一个具有期望特性的特殊的逆模型。当采用期望输出与神经网络正向模型的 输出之差训练逆模型网络时,该方法还能有效抑制实际系统噪声的影响,具有良好的鲁棒 性。缺点是神经网络正向建模误差会影响逆模型网络的辨识精度,当采用系统的期望输出 和实际输出之差选连逆模型网络时,正向模型仅作为误差信息的反向传播通道,其误差一 第6 页武汉科技大学硕士学位论文 般只影响逆模型网络的收敛速度,而不影响训练精度。这种方法较前者具有更好的适应性 【7 】【2 5 】 o ( a ) 直接逆建模法( b ) 正一逆建模法 2 2 2 神经网络控制 图2 2 神经网络逆向建模 + 神经网络应用于控制系统设计主要是针对系统的非线性,不确定性和复杂性进行的。 由于神经网络的适应能力,并行处理能力和它的鲁棒性,使采用神经网络的控制系统具有 更强的适应性和鲁棒性。通常神经网络在控制系统中作用可分为如下几种: ( 1 ) 充当系统的模型,构成各种控制结构,如在内模控制,模型参考自适应控制,预测 控制中,充当对象的模型等。 ( 2 ) 直接用作控制器。 ( 3 ) 在控制系统中起优化计算的作用。 在神经网络控制系统中,信息处理过程通常分为自适应学习期和控制期两个阶段。在 控制期,网络连接模式和权重已知且不变,各神经元根据输入信息和状态信息产生输出; 在学习期,网络按一定的学习规则调整其内部连接权重,使给定的性能指标达到最优。两 个阶段可以独立完成,也可以交替进行。 目前,国内外学者提出了许多面向对象的神经网络控制结构和方法,从大类上看,较具 代表性的有以下几种: 2 2 2 1 神经监督控制 监督控制是利用神经网络的非线性映射能力,使其学习人与被控对象打交道时获取的 知识和经验,从而最终取代人的控制行为。它需要一个导师,以提供神经网络训练用的从 人的感觉到人的决策行为的映射,导师可以是人,也可以是常规控制器。在此结构中,神 经网络的行为有明显的学习期和控制期之分,在学习期,网络接受训练以逼近系统的逆动 力学;而在控制期,神经网络根据期望输出和参考输入回忆起j 下确的控制输入。这类方案 如图2 3 所示。 武汉科技大学硕士学位论文第7 页 【口)御 图2 3 神经网络监督控制 在图2 3 ( a ) 方案中,神经网络学习是人工控制器的正向模型,并输出与人工控制器 相似的控制作用。该方案的缺点是神经网络控制器n n c 由于缺乏反馈,使得构成的控制系 统的稳定性和鲁棒性得不到保证。而在图2 3 ( b ) 方案中,神经网络实质上是一个前馈控 制器,它与常规反馈控制器同时起作用,并根据反馈控制器的输出进行学习,目的是使反 馈控制器的输出趋于零,从而逐步在控制中占据主导地位,最终取消反馈控制器的作用m 1 。 而当系统出现干扰时,反馈控制器又重新起作用。这种监督控制方案由于在前期学习中, 利用了常规控制器的控制思想,而在控制期,又能通过训练不断地学习新的系统信息,不 仅具有较强的稳定性和鲁棒性,而且能有效提高系统的精度和自适应能力,应用效果较好。 2 2 2 2 神经网络直接逆动态控制 神经网络直接逆动态控制是将系统的逆动态模型直接串联在被控对象之前,使得复合 系统在期望输出和被控系统实际输出之间构成一个恒等映射关系。这时网络直接作为控制 器工作,如图2 - 1 0 所示。这种控制方案在机器人控制中得到了广泛的应用。 ( a ) 神经网络逆辨识 ( b ) 神经网络直接控制 图2 4 神经网络直接逆动态控制 直接控制方法中神经网络控制器n n c 也相当于逆辨识器,如图2 4 ( a ) 所示。图2 4 ( b ) 也就是人们通常说的神经网络直接控制器的典型结构。对于周期不变的非线性系统, 可以采用静态逆辨识的方式。假设系统的逆存在且可辨识,可先用大量的数据离线训练逆 模型,训练好以后在嵌入控制。离线训练逆模型问题要求网络有较好的泛化能力,即期望 的被控对象的输入输出映射空间必须在训练好的神经网络输入输出映射关系的覆盖下。 但是,这种控制结构要求系统是可逆的,而被控对象的可逆性研究仍是当今一个疑难 问题,这在很大程度上限制了此方法的应用。 2 2 2 3 神经网络参数估计自适应控制 如图2 5 所示,这里利用神经网络的计算能力对控制器参数进行约束、优化求解。成 功的范例是机器人轨迹控制。控制器可以是基于l y a p u n o v 的自适应控制或自校正控制以 及模糊控制器。神经网络对控制器中用到的系统参数进行实时辨识和优化,以便为控制器 第8 页武汉科技大学硕士学位论文 提供正确的估计值。 输出 图2 5 神经网络参数估计自适应控制 2 2 2 4 神经网络模型参考自适应控制 基于神经网络的非线性系统模型参考控制方案最早是由n a r e n d r a 等人提出的,它分 为直接和间接两种,如图2 6 所示。 张) ( b 图2 6 神经网络模型参考自适应控制 该方案将神经网络直接作为控制器,用系统输出误差来进行训练。这里,闭环系统的 期望行为由一个稳定的参考模型给出,控制系统的作用是使得系统输出渐进地与参考模型 的输出匹配。这与上面介绍的直接逆动态模型的训练过程相似,当参考模型为恒等映射时, 两种方法是一致的。 对于直接模型参考自适应控制,如图2 6 ( a ) 所示,对象必须已知时,才可进行误差 的反向传播,这给n n c 的训练带来了困难。为解决这一问题,可引入神经网络辨识器n n i , 建立被控对象的正向模型,构成图2 6 ( b ) 所示的间接模型参考自适应控制。在这种结构 中,系统误差可通过n n i 反向传播至n n c 。当用自适应控制器代替n n c 时,这种方法与神 经网络参数估计自适应控制类似m 5 m 别。 2 2 2 5 神经网络内模控制 内模控制是近年来人们熟知的一种过程方法,它主要利用被控对象的模型和模型的逆 构成控制系统。内模控制的主要特点有: ( 1 ) 设被控对象和控制器是输入输出稳定的,且模型是对象的完备表示,则闭环系 统是输入输出稳定的。 ( 2 ) 假设描述对象模型的算子的逆存在,且用这个逆作控制器,构成的闭环系统是 输入稳定的,则控制是完备的,即总有y ( 尼) = y d ( 七) 。 ( 3 ) 假设稳定状态模型算子的逆存在,稳定状态控制器的算子与之相等,且用此控 制器时闭环系统是输入输出稳定的,那么对于常值输入,控制是渐进无偏差的。 内模控制为非线性反馈控制器的设计提供了一种直接法,具有较强的鲁棒性。用神经 网络建立被控对象的正向模型和控制器,即构成了神经网络内模控制,如图2 7 所示。通 武汉科技大学硕士学位论文第9 页 常,在神经网络内模控制结构中,系统的正向模型与被控对象并联,两者之差用作反馈信 号,该反馈信号通过前馈通道的滤波器和控制器处理后,对被控对象实施控制。引入滤波 器的目的是为了获得更好的鲁棒性和跟踪响应效果。这种控制结构,对于线性系统,要求 对象为开环稳定的;对于非线性系统,是否还有其他条件,目前尚在进一步探索研究之中。 图2 7 神经网络内模控制 在上述方法中,除第三种以外,其余方法的共同特点是其内部特点是其内部都包含有 由神经网络建立的系统模型正向模型或逆向模型,所以可称其为基于神经网络模型的 控制。这里要特别指出,神经网络作为一门技术,在实际应用中往往不是以单一的角色独 立承担控制任务的儿矧。对于复杂的非线型控制对象,常常是自觉或不自觉地与各种控制 技术,如变结构控制,模糊控制,专家系统等相结合,构成基于神经网络的智能复合控制 结构。对于实际工业控制,这类控制结构往往更具实用价值。 2 2 3 当前神经网络控制的研究课题 从理论上看,神经网络与传统控制理论的结合使控制系统具有相当程度的智能。利用 网络的学习能力和任意非线性映射能力,通过对样本数据对的训练,神经网络可以实现对 复杂系统的辨识和控制。诚然如此,目前神经网络控制的研究大多仍停留于数学仿真和实 验室研究阶段,极少用于实际系统的控制h 。究其原因,主要在于: ( 1 ) 存在局部极小问题,造成网络的局部收敛,影响系统的控制精度。 ( 2 ) 学习速度慢,训练时间长限制了神经网络在实时控制中的应用。 ( 3 ) 理想的训练样本提取困难,影响了网络的训练速度和训练质量。 ( 4 ) 网络结构不易优化,特别是隐层节点数目的选取常常带有盲目性。 ( 5 ) 尚未从理论上完全解决神经网络学习算法的收敛性和神经网络控制系统的稳定 性问题。 因此,与其他比较成熟的控制理论相比,当前神经网络在控制系统方面的应用研究, 应着重解决以下几个问题: ( 1 ) 寻求可全局收敛的快速学习算法,以满足系统实时控制和良好性能的需要。 ( 2 ) 逼近非线性函数的问题上,现有的理论只解决了存在性问题。对不同被控对象, 如何选择合适的神经网络结构,目前还缺乏理论指导。对多层前馈网络,这一问题就是网 络的层数和隐层接点数的选择问题。 ( 3 ) 目前神经网络控制基本应用模式是将神经网络作为模型或控制器加入控制回路 中,通过学习,实现对非线性系统的控制。如何在工程中实时实现这一控制思想,是控制 第1 0 页武汉科技大学硕士学位论文 专家们必须研究的课题。另外,对于这种模式,控制系统的稳定性,可控性等理论问题还 需进一步研究。由于非线性系统的多样性,复杂性,加之神经网络本身的非线性,使这一 问题的解决更加困难。目前对h o p f i e l d 网络可以借助l y a p u n o v 理论来分析,而对多数网 络,我们仅有收敛性分析,而且是对静态不动点进行的;对于动态轨迹跟踪系统的收敛性 问题尚没有十分明朗的结果,还须进一步研究。 ( 4 ) 前神经网络模型的使用通常采用“离线学习,在线修正 的方法,理想的训练 样本获取困难。如何直接在线建立对象的模型一直是神经网络控制的一个热点问题,需要 寻求一种具有良好辨识精度且可以实时应用的神经网络在线辨识方法。 ( 5 ) 复杂系统中通常存在大量不确定性因素,神经网络要在复杂系统中取得成功应 用,必须设法提高神经网络控制器的适应能力和控制系统的鲁棒性。 此外,神经网络硬件的研究也是实用有效的控制系统设计必须注重的问题。这是因为 神经网络的大规模并行处理能力只有通过硬件才能实现。也只有这样,才能真正发挥神经 网络的巨大应用潜力n o 【1 2 】【2 7 。 需要说明的是,神经网络控制方法中存在的有些问题,是非线性系统理论本身所固有 的,并非采用神经网络模型所引起的。因此,随着非线性系统理论和其他相关科学的发展, 上述问题的解决前景是乐观的。另外,虽然神经网络控制还存在理论上不完善的地方,但 已在非线性系统建模和未知动态系统控制,齿轮间隙非线性补偿,主动减振和结构试验等 许多工程实践中取得了成功的应用,可以预见,随着神经网络研究的进一步深入,实际应 用必将在更广泛的层次上得到发展。许多专家认为,神经网络控制研究j 下处于攻坚阶段, 它将是通向智能控制的一条成功之路。 2 3 神经网络控制技术基础 对控制系统而言,神经网络的主要贡献在于提供了一种非线性静态映射,它能以任意 精度逼近任意给定的非线性关系;能够学习和适应未知不确定系统的动态特性,并将其隐 含存储于网络内部的连接权中,需要时,可通过信息的前馈处理,再现系统的动态特性。 这些特点不仅使得神经网络在解决高度非线性和未知不确定性系统的控制问题上显示了 巨大潜力,而且在许多其他领域,如模式识别,信号处理,系统辨识和预报中,也取得了 各种各样的应用。 在神经网络的应用研究中,除了网络的逼近能力这一固有特性外,另一个关键问题就 是网络的训练问题。在控制应用中,网络训练不仅要考虑算法的收敛性,还要考虑算法的 实时性和在线实现问题。这罩主要从控制角度描述了神经元模型及其学习算法。 2 3 1 控制用神经元模型 神经元实质上是一种信息处理单元,是构成神经网络的基本单元,目前尚无统一的描 述模型。基于控制的观点,神经元的模型结构可以描述为输入处理环节,状态处理环节, 武汉科技大学硕士学位论文第1 1 页 输出处理环节和学习环节等四个部分,如图2 8 所示。 图2 8 神经元模型网络 2 3 1 1 输入处理环节 输入处理环节相当于余割加权加法器,用来完成神经元输入信号的空间综合功能,即 m ( f ) = 乃( f ) + k 卵女( f ) + m ( 2 3 ) j = l i = i 其中:m ( f ) 为空间综合后的信号;y ) ,( f ) 分别为来自其他神经元的输出信号和外部输 入信号;,分别为上述信号的加权系数;为一个常数,其作用是控制神经元处于某 一特定状态。 2 3 1 2 状态处理环节 输入信号对神经元状态的影响会在一段时间内持续,状态处理环节就是用来处理神经 元的内部状态信息,对神经元的输入信号起着时间综合作用。即对某一时刻以前的输入信 号进行总和处理,以决定该时刻神经元输出的大小。它相当于一个单输入一输出线性动态 系统,输入一输出关系为 彳f ( s ) = h i ( s ) k ( ,) ( 2 4 ) 其时域描述形式为 ( f ) = i = h ( t - f ) v ,( f ) d r 其中h ( s ) 和h ( s ) 是拉氏变换对。一般地,h ( s ) 的形式为 h ( s ) = 1 ( a o s + a i ) ( 2 5 ) ( 2 6 ) a o , a 。的取值决定了由该神经元所构成的网络性质。如取a 。= o ,a 。= 1 时,构成的网络不具 动态行为,属静态网络;a 。= t ,a ,= 1 时,网络自身有反馈连接,这是构成的网络是动态网 络,其输入一输出关系不再是简单的映射关系,而体现了一种动态变化过程。 2 3 1 3 输出处理环节 输出处理环节实际上是一个非线性激活函数,它将经过前两个环节进行时空综合后 的信号,通过一个非线性作用函数,产生神经元的输出 第1 2 页武汉科技大学硕士学位论文 y i ( f ) = 仃( 薯) ( 2 7 ) 由于神经元的种类繁多,不同神经元的输出特性个不相同,因此神经元输出激活函数 的种类也不同。一般地,要求它满足单调,递增,连续即可,通常可以采用如下几种非线 性函数形式: ( a ) 硬限幅函数 ) : o 砖o ( 2 8 ) 仃( x ) 2 1 1x o ( 2 8 ) ( b ) 线性限幅函数 f 0 x o ,6 0 为修正系数。权值调整完毕后,可直接求出系统 的控制量为 “p ( t ) = ( 形p ( 七) + 7 ( 尼) + w d ( 七) ) r x ( 尼) ( 2 3 8 ) 在上述控制率中,如令s 印协p 锄,) = 1 ,r d = 0 ,则由上述规则构成的控制率与由 p o p o v 超稳定性定理得出的自适应控制律相同。对于朗道提出的模型参考自适应控制律, 可以证明,引入( 2 3 8 ) 式的微分项后( s g n ( 砂p o u p ) = 1 ) ,仍能保证系统的超稳定特性。 可以看出,采用h d a l i n e 网络进行自适应律的设计时,仅比传统自适应控制率的设计多出 一个符号项s 印协p 锄p j 。 我们知道,传统自适应控制在设计自适应律时,为满足前项通道严格正实这一超稳定 性的必要条件,需要在误差反馈通道构造串联滤波器。为简单起见,常常取常值正1 或负 l 。由此产生的结果是系统对低频缓时变信号( 相对于系统频带) 的控制效果较好,而对高 频信号则产生较大的控制偏差。在相同条件下,h d a l n e 神经网络控制要比传统自适应控制 具有更大的输入空间,因而有可能适应非线性较强的系统控制。 以上讨论了采用h d a l i n e 网络对线性系统,弱线性系统或慢时变系统的控制方法。对 于一般的非线性系统,可以构造多层神经网络或高阶网络控制器,如b p 网络,r b f 网络等。 本节取b p 网络结构,隐层单元激化函数设为s i g m o i d 函数;若记隐层输出为x h ,则 x = 仃( 略x ) ( 2 3 9 ) 其中:为输入层至隐层的权值矩阵;x 为输入向量。网络输出即控制率为 u ,= 略 ( 2 4 0 ) 类似的,网络隐层权值的调整可按传统b p 算法进行,而输出层权值的学习可借鉴( 2 3 4 ) ( 2 3 7 ) 式的学习算法。令 = 略+ 略+ 咙 ( 2 4 1 ) 则输出层权值的学习规则为: m ) _ 盎 q 4 2 ) 略= r p v ( 尼) s g n ( 砂p o u ,) ( 2 4 3 ) 略= r 7 1 ,( 露) s g n ( o y 口o u p ) ( 2 4 4 ) 略= r ds g n ( v ( k ) ) l v ( k ) - v ( k - 1 ) x us g n ( o y p o u p ) ( 2 4 5 ) 对上述算法的收敛性,有如下定理。 定理2 1 对非线性系统( 2 2 0 ) 式,若采用( 2 4 0 ) ( 2 4 5 ) 式表示的神经网络直接 自适应控制算法,能够保证系统输出稳定收敛。 证明:先给出以下假设: 第2 0 页武汉科技大学硕士学位论文 假设2 1非线性系统( 2 2 0 ) 是连续且满足局部l i p s c h i t z 条件的b i b o 系统。 假设2 2 非线性系统( 2 2 0 ) 对给定参考模型( 2 2 1 ) 是控制可达的。 显然,当r p = r d = 0 时,神经网络结构中仅含有积分项,即为标准的神经网络直接自 适应结构,( 2 4 0 ) ( 2 4 5 ) 式即退化为标准的b p 算法,其稳定收敛性研究已有现成的 结论。 当r p ,r d 0 时,控制率( 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论